首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H3K36 methylation antagonizes PRC2-mediated H3K27 methylation   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
6.
7.
Epigenetic gene silencing suppresses transposon activity and is critical for normal development . Two common epigenetic gene-silencing marks are DNA methylation and histone H3 lysine 9 dimethylation (H3K9me2). In Arabidopsis thaliana, H3K9me2, catalyzed by the methyltransferase KRYPTONITE (KYP/SUVH4), is required for maintenance of DNA methylation outside of the standard CG sequence context. Additionally, loss of DNA methylation in the met1 mutant correlates with a loss of H3K9me2. Here we show that KYP-dependent H3K9me2 is found at non-CG methylation sites in addition to those rich in CG methylation. Furthermore, we show that the SRA domain of KYP binds directly to methylated DNA, and SRA domains with missense mutations found in loss-of-function kyp mutants have reduced binding to methylated DNA in vitro. These data suggest that DNA methylation is required for the recruitment or activity of KYP and suggest a self-reinforcing loop between histone and DNA methylation. Lastly, we found that SRA domains from two Arabidopsis SRA-RING proteins also bind methylated DNA and that the SRA domains from KYP and SRA-RING proteins prefer methylcytosines in different sequence contexts. Hence, unlike the methyl-binding domain (MBD), which binds only methylated-CpG sequences, the SRA domain is a versatile new methyl-DNA-binding motif.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
《Epigenetics》2013,8(5):273-276
Residue and degree-specific methylation of histone lysines along with other epigenetic modifications organizes chromatin into distinct domains and regulates almost every aspect of DNA metabolism. Identification of histone methyltransferases and demethylases, as well as proteins that recognize methylated lysines, has clarified the role of each methylation event in regulating different biological pathways. Methylation of histone H4 lysine 20 (H4K20me) plays critical roles in diverse cellular processes such as gene expression, cell cycle progression and DNA damage repair, with each of the three degrees of methylation (mono- di- and tri-methylation) making a unique contribution. Here we discuss recent studies of H4K20me that have greatly improved our understanding of the regulation and function of this fascinating histone modification.  相似文献   

18.
组蛋白赖氨酸甲基化在表观遗传调控中的作用   总被引:3,自引:2,他引:1  
杜婷婷  黄秋花 《遗传》2007,29(4):387-392
组蛋白赖氨酸的甲基化在表观遗传调控中起着关键作用。组蛋白H3的K4、K9、K27、K36、K79和H4的K20均可被甲基化。组蛋白H3第9位赖氨酸的甲基化与基因的失活相关连; 组蛋白H3第4位赖氨酸和第36位赖氨酸的甲基化与基因的激活相关连; 组蛋白H3第27位赖氨酸的甲基化与同源盒基因沉默、X染色体失活、基因印记等基因沉默现象有关; 组蛋白H3第79位赖氨酸的甲基化与防止基因失活和DNA修复有关。与此同时, 组蛋白的去甲基化也受到更为广泛的关注。 关键词: 组蛋白赖氨酸甲基转移酶; 组蛋白赖氨酸甲基化; 组蛋白去甲基化  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号