首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA polymorphism between two major japonica rice cultivars, Nipponbare and Koshihikari, was identified by AFLP. Eighty-four polymorphic AFLP markers were obtained by analysis with 360 combinations of primer pairs. Nucleotide sequences of 73 markers, 29 from Nipponbare and 44 from Koshihikari, were determined, and 46 AFLP markers could be assigned to rice chromosomes based on sequence homology to the rice genome sequence. Specific primers were designed for amplification of the regions covering the AFLP markers and the flanking sequences. Out of the 46 primer pairs, 44 amplified single DNA fragments, six of which showed different sizes between Nipponbare and Koshihikari, yielding codominant SCAR markers. Eight primer pairs amplified only Nipponbare sequences, providing dominant SCAR markers. DNA fragments amplified by 13 primer pairs showed polymorphism by CAPS, and polymorphism of those amplified by 13 other primer pairs were detected by PCR-RF-SSCP (PRS). Nucleotide sequences of the other four DNA fragments were determined in Koshihikari, but no difference was found between Koshihikari and Nipponbare. In total, 40 sequence-specific markers for the combination of Nipponbare and Koshihikari were produced. All the SNPs identified by AFLP were detectable by CAPS and PRS. The same method was applicable to a combination of Kokoromachi and Tohoku 168, and 23 polymorphic markers were identified using these two rice cultivars. The procedure of conversion of AFLP-markers to the sequence-specific markers used in this study enables efficient sequence-specific marker production for closely related cultivars.  相似文献   

2.
PCR (polymerase chain reaction)-RF(restriction fragment)-SSCP (single-strand conformation polymorphism) - designated here as PRS - is a combined method of SSCP and PCR-RFLP (restriction fragment length polymorphism) - designated as CAPS (cleaved amplified polymorphic sequence) - and was efficient in detecting intraspecific variation of the SLR1 gene in Brassica oleracea. One to six nucleotide changes in restriction fragments of the SLR1 gene were detected as different bands in PRS. In an analysis of randomly chosen DNA fragments in cabbage, PRS detected DNA polymorphism between different cultivars with more than 60% of the primer pairs used except for a combination of two cultivars having highly similar characteristics. In rice, no DNA polymorphism was found between two Japonica cultivars, while more than 80% of the primer pairs showed DNA polymorphism between Japonica cultivars and Indica cultivars. PRS had a 1.5- to twofold greater ability to detect DNA polymorphism in these cabbage and rice cultivars than CAPS. The present study indicated that PRS is potentially useful for the identification of crop cultivars and genetic mapping of DNA fragments including genes of interest.  相似文献   

3.
Shen YJ  Jiang H  Jin JP  Zhang ZB  Xi B  He YY  Wang G  Wang C  Qian L  Li X  Yu QB  Liu HJ  Chen DH  Gao JH  Huang H  Shi TL  Yang ZN 《Plant physiology》2004,135(3):1198-1205
DNA polymorphism is the basis to develop molecular markers that are widely used in genetic mapping today. A genome-wide rice (Oryza sativa) DNA polymorphism database has been constructed in this work using the genomes of Nipponbare, a cultivar of japonica, and 93-11, a cultivar of indica. This database contains 1,703,176 single nucleotide polymorphisms (SNPs) and 479,406 Insertion/Deletions (InDels), approximately one SNP every 268 bp and one InDel every 953 bp in rice genome. Both SNPs and InDels in the database were experimentally validated. Of 109 randomly selected SNPs, 107 SNPs (98.2%) are accurate. PCR analysis indicated that 90% (97 of 108) of InDels in the database could be used as molecular markers, and 68% to 89% of the 97 InDel markers have polymorphisms between other indica cultivars (Guang-lu-ai 4 and Long-te-pu B) and japonica cultivars (Zhong-hua 11 and 9522). This suggests that this database can be used not only for Nipponbare and 93-11, but also for other japonica and indica cultivars. While validating InDel polymorphisms in the database, a set of InDel markers with each chromosome 3 to 5 marker was developed. These markers are inexpensive and easy to use, and can be used for any combination of japonica and indica cultivars used in this work. This rice DNA polymorphism database will be a valuable resource and important tool for map-based cloning of rice gene, as well as in other various research on rice (http://shenghuan.shnu.edu.cn/ricemarker).  相似文献   

4.
Identification of single nucleotide polymorphisms (SNPs) in a large number of genes will enable estimation of the number of genes having different alleles in a population. In the present study, SNPs between 21 rice cultivars including 17 Japanese cultivars, one upland rice, and three indica cultivars were analyzed by PCR–RF–SSCP. PCR–RF–SSCP analysis was found to be a more efficient method for detecting SNPs than mismatch–cleavage analysis, though both PCR–RF–SSCP and mismatch–cleavage are useful for screening SNPs. The number of DNA fragments showing polymorphism between Japanese cultivars was 134 in the 1,036 genes analyzed. In 137 genes, 638 DNA polymorphisms were identified. Out of 52 genes having polymorphisms in the exons, one had a frame-shift mutation, three had polymorphism causing amino acid insertions or deletions, and 16 genes had missense polymorphisms. The number of genes having frame-shift mutations and missense polymorphisms between the 17 Japanese cultivars was estimated to be 41 and 677 on average, respectively, and those between japonica and indica to be 425 and 6,977, respectively. Chromosomal regions of cultivars selected in rice breeding processes were identified by SNP analysis of genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We searched the genomes of eight rice cultivars (Oryza sativa L. ssp. japonica and ssp. indica) and a wild rice accession (Oryza rufipogon Griffith) for nucleotide polymorphisms, and identified 7805 polymorphic loci, including single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels), in predicted intergenic regions. Polymorphisms are useful as DNA markers for genetic analysis or positional cloning with segregating populations of crosses. Pairwise comparison between cultivars and a neighbor-joining tree calculated from SNPs agreed very well with relationships between rice strains predicted from pedigree data or calculated with other DNA markers such as p-SINE1 and simple sequence repeats (SSRs), suggesting that whole-genome SNP information can be used for analysis of evolutionary relationships. Using multiple SNPs to identify alleles, we drew a map to illustrate the alleles shared among the eight cultivars and the accession. The map revealed that most of the genome is mono- or di-allelic among japonica cultivars, whereas alleles well conserved among modern japonica paddy rice cultivars were often shared with indica cultivars or wild rice, suggesting that the genome structure of modern cultivars is composed of chromosomal segments from various genetic backgrounds. Use of allele-sharing analysis and association analysis were also tested and are discussed.  相似文献   

6.
Molecular breeding approaches are of growing importance to crop improvement. However, closely related cultivars generally used for crossing material lack sufficient known DNA polymorphisms due to their genetic relatedness. Next-generation sequencing allows the identification of a massive number of DNA polymorphisms such as single nucleotide polymorphisms (SNPs) and insertions-deletions (InDels) between highly homologous genomes. Using this technology, we performed whole-genome sequencing of a landrace of japonica rice, Omachi, which is used for sake brewing and is an important source for modern cultivars. A total of 229 million reads, each comprising 75 nucleotides of the Omachi genome, was generated with 45-fold coverage and uniquely mapped to 89.7% of the Nipponbare genome, a closely related cultivar. We identified 132,462 SNPs, 16,448 insertions and 19,318 deletions between the Omachi and Nipponbare genomes. An SNP array was designed to validate 731 selected SNPs, resulting in validation rates of 95 and 88% for the Omachi and Nipponbare genomes, respectively. Among the 577 SNPs validated in both genomes, 532 are entirely new SNP markers not previously reported between related rice cultivars. We also validated InDels on a part of chromosome 2 as DNA markers and successfully genotyped five japonica rice cultivars. Our results present the methodology and extensive data on SNPs and InDels available for whole-genome genotyping and marker-assisted breeding. The polymorphism information between Omachi and Nipponbare is available at NGRC_Rice_Omachi (http://www.nodai-genome.org/oryza_sativa_en.html).  相似文献   

7.
The polymerase chain reaction (PCR) was used to survey DNA sequence variation among 12 indica and 10 japonica rice cultivars. Of the 143 primer pairs used, 37 detected amplicon length polymorphism (ALP) and 11 revealed PCR banding patterns paralleled with the indica/japonica differentiation. Thus the 11 primer pairs were used to discriminate the two rice subspecies. A collection of 116 accessions representing the breadth of rice germplasm was analyzed for ALP at the 11 loci. Rice accessions with scores of 0.3 or more were classified as indica while those with –0.3 or less were classified as japonica. Those with scores from –0.3 to 0.3 were considered intermediate. With this criterion, 70 accessions were classified as indica, 35 accessions as japonica, and 11 accessions as intermediate. The concept and the approach used here for rice should be equally applicable for classifying other plant species. Received: 1 July 1997 / Revision received: 4 December 1997 / Accepted: 29 December 1997  相似文献   

8.
9.
10.
The conditions for efficient single-strand conformation polymorphism(SSCP) detection were examined for its application to mappingof DNA regions in the rice genome. Temperature for electrophoresisand glycerol concentrations in gel affected SSCP patterns significantly.The optimal detection conditions for SSCP also depends on thenucleotide sequences of fragments analyzed. Fragments over 300bp show complicated patterns depending on their nucleotide sequencesand were not suitable for SSCP analysis. Seventy primer pairswere designed from the sequence data available to amplify DNAregions as sequence tagged sites (STSs), and 39 of these STSswere found to generate SSCP between japonica rice (Nipponbare)and indica rice (Kasalath) in at least one of the experimentalconditions. The maps of DNA fragments amplified from 186 F2-plantDNAs with 17 primer pairs were successfully determined. Thisdirect mapping method of the amplified DNA fragments with PCRis simple and quite sensitive, and can be used to set markersin the gap regions of a genetic linkage map.  相似文献   

11.
Elucidation of the rice genome is expected to broaden our understanding of genes related to the agronomic characteristics and the genetic relationship among cultivars. In this study, we conducted whole-genome sequencings of 6 cultivars, including 5 temperate japonica cultivars and 1 tropical japonica cultivar (Moroberekan), by using next-generation sequencing (NGS) with Nipponbare genome as a reference. The temperate japonica cultivars contained 2 sake brewing (Yamadanishiki and Gohyakumangoku), 1 landrace (Kameji), and 2 modern cultivars (Koshihikari and Norin 8). Almost >83% of the whole genome sequences of the Nipponbare genome could be covered by sequenced short-reads of each cultivar, including Omachi, which has previously been reported to be a temperate japonica cultivar. Numerous single nucleotide polymorphisms (SNPs), insertions, and deletions were detected among the various cultivars and the Nipponbare genomes. Comparison of SNPs detected in each cultivar suggested that Moroberekan had 5-fold more SNPs than the temperate japonica cultivars. Success of the 2 approaches to improve the efficacy of sequence data by using NGS revealed that sequencing depth was directly related to sequencing coverage of coding DNA sequences: in excess of 30× genome sequencing was required to cover approximately 80% of the genes in the rice genome. Further, the contigs prepared using the assembly of unmapped reads could increase the value of NGS short-reads and, consequently, cover previously unavailable sequences. These approaches facilitated the identification of new genes in coding DNA sequences and the increase of mapping efficiency in different regions. The DNA polymorphism information between the 7 cultivars and Nipponbare are available at NGRC_Rices_Build1.0 (http://www.nodai-genome.org/oryza_sativa_en.html).  相似文献   

12.
The rice mitochondrial genomes and their variations   总被引:1,自引:0,他引:1       下载免费PDF全文
Tian X  Zheng J  Hu S  Yu J 《Plant physiology》2006,140(2):401-410
Based on highly redundant and high-quality sequences, we assembled rice (Oryza sativa) mitochondrial genomes for two cultivars, 93-11 (an indica variety) and PA64S (an indica-like variety with maternal origin of japonica), which are paternal and maternal strains of an elite superhybrid rice Liang-You-Pei-Jiu (LYP-9), respectively. Following up with a previous analysis on rice chloroplast genomes, we divided mitochondrial sequence variations into two basic categories, intravarietal and intersubspecific. Intravarietal polymorphisms are variations within mitochondrial genomes of an individual variety. Intersubspecific polymorphisms are variations between subspecies among their major genotypes. In this study, we identified 96 single nucleotide polymorphisms (SNPs), 25 indels, and three segmental sequence variations as intersubspecific polymorphisms. A signature sequence fragment unique to indica varieties was confirmed experimentally and found in two wild rice samples, but absent in japonica varieties. The intersubspecific polymorphism rate for mitochondrial genomes is 0.02% for SNPs and 0.006% for indels, nearly 2.5 and 3 times lower than that of their chloroplast counterparts and 21 and 38 times lower than corresponding rates of the rice nuclear genome, respectively. The intravarietal polymorphism rates among analyzed mitochondrial genomes, such as 93-11 and PA64S, are 1.26% and 1.38% for SNPs and 1.13% and 1.09% for indels, respectively. Based on the total number of SNPs between the two mitochondrial genomes, we estimate that the divergence of indica and japonica mitochondrial genomes occurred approximately 45,000 to 250,000 years ago.  相似文献   

13.
14.
水稻单核苷酸多态性及其应用现状   总被引:6,自引:0,他引:6  
刘传光  张桂权 《遗传》2006,28(6):737-744
单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,遗传稳定性高。水稻SNPs的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs和从基因组序列直接搜索等。目前已有多种基因分型技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便。单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力。  相似文献   

15.
EST—SSRs是一种基于基因表达序列有关基因功能的“真质”标记,其多态性直接反映了基因的多样性。本研究采用37对小麦EST—SSRs引物检测了42份我国不同年代小麦选育品种相关基因位点多样性的变化趋势。结果表明:基于表达序列设计的小麦EST—SSRs引物具有较好的扩增效果,其中37对引物共检测到134个位点,绝大多数引物有2~5个等位变异;在相似系数为0.9的水平上这些引物可将除燕大1817和旱选3号外的40份材料区分开来;供试的42份小麦选育品种的基因多样性从20世纪60年代以前到90年代呈递增趋势,但不同年代的增幅不同:20世纪60~80年代增长最快,80年代至90年代增长十分缓慢;同时,材料间相似系数变化呈下降趋势,60年代以前的选育品种相似性最高,70年代最低,70年代以后至90年代略有增加,但远低于60年代以前,这与引人大量的外来品种的育种策略有关。  相似文献   

16.
PCR-RF-SSCP (PRS), which combines cleaved amplified polymorphic sequence (CAPS) and single-strand conformation polymorphism (SSCP), is expected to be a useful technique for DNA polymorphism analysis. We evaluated the ability of PRS to detect single nucleotide polymorphism (SNP) using the Waxy gene, Wx, of rice, and subsequently were able to identify point mutations in wx mutant lines. The approximately 6-kb Wx gene was divided into five regions for PCR amplification. Two regions, in which most of the point mutations of the wx mutants have been identified, were amplified by PCR and cloned into a vector, and those clones containing SNPs produced as a result of the inherent inaccuracy of PCR were used for the evaluation of PRS. The efficiency of PRS in the detection of SNPs of these clones was over 70%. PRS analysis of the wx genes in 18 waxy mutants was carried out in the five regions using two different restriction endonucleases and two gel conditions, with and without glycerol. Of the 18 lines tested, 17 showed band patterns different from that of the wild type. Most of the mutations identified in this study were nucleotide changes in exons, which result in amino acid changes. One mutation generated an in-frame stop codon, and another was a frame shift mutation by one-base deletion. Two mutations found at a splice site were considered to inhibit normal splicing of mRNA. These results show that PRS is a useful technique for detecting point mutations in large plant genes.  相似文献   

17.
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.  相似文献   

18.
19.
Seven polymorphic microsatellites were developed in olive. Six of them came from a genomic library enriched for GA and CA repeat sequences. They showed single locus polymorphism in a set of 23 olive cultivars (from six to nine alleles per locus). Three different pairs of loci were sufficient to discriminate all cultivars. The other polymorphic primer pair was designed from a published sequence for olive lupeol sgutase and revealed just two alleles. The seven primer pairs were tested on two accessions of five other species of the Oleaceae and three, EMO2, EMO13 and EMO90, revealed polymorphism in two, four and three species, respectively.  相似文献   

20.
为了克服单纯依据形态特性鉴定品种的局限性, 我们开展了莲品种DNA指纹图谱构建研究, 旨在对其品种的快速准确鉴定及专利权保护等起一定作用。本研究以圆明园保存的72个莲品种为实验材料, 用来自不同地点的1,409份野生莲(Nelumbo nucifera)和58份美洲黄莲(N. lutea)群体样本作遗传背景参照。从104对核微卫星引物(nSSR)中筛选出15对, 从17对叶绿体微卫星(cpSSR)引物中筛选出2对, 共17对引物作为72个莲品种DNA指纹鉴定的条码。15对nSSR引物共检测到94个等位基因(平均6.27个), 其中11个属于美洲黄莲, 65个属于野生莲, 18个不能区分; 多态信息含量(PIC)介于0.3899-0.8023之间 (平均0.5748)。2对cpSSR引物共检测到13个单倍型, 其中9个属于野生莲, 4个属于美洲黄莲。全部17对引物标记结果显示, 共有19个品种含有美洲黄莲遗传组分, 其中8个母系来源于美洲黄莲; 有36个品种(涉及12对引物)具有至少1个特有基因型; 最少8对引物组合可完全区分开68个品种。有2组共4个品种组内全部17对引物均不能区分。本研究通过核心引物组合法使68个莲品种获得特异性DNA指纹。推荐13对nSSR和2对cpSSR共15对引物作为莲品种鉴定的核心条码, 并建议将形态特征与DNA指纹相结合作为莲品种的鉴定标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号