首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditions influencing the opening of the bean (Phaseolus vulgaris L.) and cotton (Gossypium hirsutum L.) hypocotyl hook were defined. Such hooks were shown to undergo geotropic curvature; orientation of the hook with respect to gravity greatly affected the observed opening. Cotton and bean hooks behaved exactly opposite in regard to the presence of the cotyledons and apical bud. The cotton hook required the cotyledons for opening, but the corresponding tissue slowed or inhibited opening of the bean hook. With cotton, lower hypocotyl and root tissues stimulated hook opening, but with bean, the tissues below the hook section had little effect. Kinetin and gibberellic acid both modified hook opening in light and dark; the former was inhibitory and the latter was stimulatory. Indoleacetic acid, at concentrations above 10−5 M, caused pronounced hook closing in red light but not in the dark. These effects were generally the same with both plants. In opening of the cotton hook, the cotyledons were not necessary as a light receptor tissue. None of the growth substances tested were able to substitute completely for the cotton cotyledon. Coumarin was a pronounced inhibitor of opening of the cotton hook, and this response was expressed to such a degree as to cause hook closure with bean tissue. Reduced oxygen levels inhibited hook opening in bean. Oxygen was required in processes subsequent to the light reaction, but not for the photochemical process.  相似文献   

2.
Photographic observations on germinating seedlings of Lepidium sativum L., Cucumis sativus L., and Helianthus annuus L. showed that the hypocotyl hook is not present in the seed but forms during the early stages of growth. Evidence that gravity plays a major role in inducing curvature of the hypocotyl, and in maintaining the hook once it has been formed, was obtained from clinostat experiments, from the use of morphactin to remove geotropic sensitivity and from inversion of seedlings to change the direction of the geostimulus. In L. sativum and H. annuus gravity perception seemed to be the only mechanism responsible for hook formation. In C. sativus hook formation was additionally aided by the mode of emergence of the cotyledons from the seed coat but gravity played an indirect role in regulating such emergence. Further evidence that hook formation is linked to a georesponse was derived from a comparison of hypocotyl development in wild-type Arabidopsis thaliana seedlings with that of an ageotropic mutant, hook formation being found to occur only in the wild type. Hook formation and maintenance is discussed in terms of contrasting geosensitivity between the apical and basal ends of the hypocotyl and it is suggested that light-induced hook opening is a reversal to a condition of uniformly negative georesponse throughout the hypocotyl.  相似文献   

3.
Four-day-old etiolated cucumber cotyledons (Cucumis sativus, L.) were excised and allowed to green in white fluorescent light at 28 C. Cotyledons excised with a full hypocotyl hook exhibited a lag phase of 1 hour before entering the rapid greening phase, whereas cotyledons excised without any hypocotyl hook exhibited a lag phase of 6 hours. Cotyledons excised with varying lengths of hypocotyl hook accumulated chlorophyll roughly in proportion to the hook length. When cotyledons were excised with a full hook and were partially or totally shielded from light with aluminum foil, the samples with the hook covered accumulated more chlorophyll than the wholly exposed samples. The samples with the cotyledons covered showed no net accumulation of chlorophyll irrespective of hook's exposure to light. These data suggest the contribution of some factor or factors by the hypocotyl hook which reduce the lag phase during greening.  相似文献   

4.
5.
幼苗顶端弯钩的形成是双子叶植物暗形态建成过程中的一个重要事件。它保护双子叶植物幼嫩的子叶和脆弱的顶端分生组织在幼苗出土时免受机械损伤,进而保证幼苗的出苗率和成活率。幼苗顶端弯钩的形成是由于下胚轴顶端的两个对立面之间细胞分裂和延伸的不对称所引起的。目前,关于双子叶植物幼苗顶端弯钩发育分子机制的研究已有较大进展:发现生长素在顶端弯钩内外侧组织的梯度分布是顶端弯钩两侧细胞差异生长的重要驱动力;乙烯、赤霉素和油菜素内酯促进顶端弯钩的形成和维持;茉莉酸抑制顶端弯钩的形成;而光照则促进弯钩的打开;无弯钩1 (hookless1, HLS1)、乙烯不敏感3以及EIN3 相似蛋白1 (ethylene insensitive 3 /EIN3 like 1, EIN3/EIL1)、DELLA、组成型光形态发生1(constitutive photomorphogenic 1, COP1) 和光敏色素相互作用因子(phytochrome interacting factors, PIFs) 等多种因子已被发现参与顶端弯钩的发育过程,并介导了多种激素之间的互作。本文综述了双子叶植物幼苗顶端弯钩发育过程中的重要作用因子及调控网络,并对该领域的研究前景进行了展望。  相似文献   

6.
Hypocotyl hooks have been shown to influence greening in excised cucumber (Cucumis sativus) cotyledons. The properties of the lag phase are greatly affected by the presence or absence of the hook tissue. A 45-second light pretreatment followed by 4 hours of darkness is sufficient to remove the lag phase from cotyledons with hooks, while hookless cotyledons require 2 hours of continuous illumination followed by 1 hour of dark incubation to break the lag phase. The effect of hooks on cotyledon greening is enhanced if the hooks are shielded from light. Cutting off the hooks after lag phase removal caused a marked decrease in chlorophyll accumulation in the cotyledons. These observations may indicate that the hypocotyl hooks produce a substance or substances needed in the greening process, which are translocated to the cotyledons. Indoleacetic acid, abscisic acid, gibberellin A3, 6-benzylamino purine and δ-aminolevulinic acid do not show any activity; on the other hand, ethylene appears to replace partially the hypocotyl hooks.  相似文献   

7.
8.
The excised, hooked bean hypocotyl was the system used to determine wheiher the ‘auxin- and gibberellin like’ effect of the lipoidal pollen extract, Brass in-complex (Br), were mediated through, or independent of, auxin and gibberellin. The morphogenetic events of hook opening and hypocotyl elongation in this system are regulated by auxin and gibberellin, respectively. Brassin complex, like IAA, elicited a book closure in (he dark and retarded its opening in red light. This effect was synergized by T1BA, IAA and the presence of the auxin-producing organs, the epicotyl and cotyledons. Br-elicited hook closure was inhibited by the antiauxin. PCIB. Both GA3 and Br totally reversed the light inhibition of hypocotyl elongation. The GA3-effect, but nol the Br elicited elongation, was overcome by Ancymidol. Hypocotyl elongation was partially inhibited by TIBA and PCIB. suggesting a possible auxin involvement also in this effect of Br. Br may elicit its growth responses through an effect on endogenous auxin levels, In this way it is different from other lipoidat growth regulators, such as the oleanimins which require the presence of exogenous growth regulators for activity.  相似文献   

9.
Inter-organ control of greening in etiolated cucumber (Cucumis sativus L. cv. Aonagajibae) cotyledons was investigated. Four- or six-day-old excised or intact etiolated cucumber cotyledons were illuminated under aerobic conditions. Excised cotyledons without hypocotyl hooks produced chlorophyll without a prolonged lag phase and the rate of chlorophyll formation was not depressed if they were illuminated immediately after excision. If the excised cotyledons were incubated in the dark before illumination, chlorophyll accumulation at the end of 6 h of continuous illumination was remarkably lowered as the dark period lengthened, especially in 6-day-old cotyledons. The rapid loss of chlorophyll-forming capacity of excised cotyledons during dark preincubation suggests a stimulatory effect of hypocotyls on the greening in cotyledons. The treatment of excised cotyledons with bleeding sap in the dark for 18 h resulted in the promotion of chlorophyll formation during subsequent continuous illumination. Partial fractionation of bleeding sap with organic solvents and paper chromatography indicates that the active substances showed the same behavior as cytokinins. These facts add weight to the hypothesis that cytokinins from roots flow into cotyledons and stimulate greening.  相似文献   

10.
Cotyledons excised without the hypocotyl hook from 6-day-old etiolated cucumber ( Cucumis sativus L. var. Elem) seedlings accumulated a significantly higher amount of chlorophyll than cotyledons excised with hooks or intact cotyledons. It was found that maximum ehancement of greening was achieved after 2 h of dark incubation following excision. Pretreatments with red light effected an additive rise in chlorophyll level in subsequent white light after a dark incubation, suggesting that the effects of excision and phytochrome on greening act independently. Etiolated seedlings were variously dissected before greening and it was found that enhancement occurred only when cotyledons were excised at the level of the hypocotyl hook or above it. Similar results were obtained when the dissected plants were pre-treated with red light.  相似文献   

11.
Yopp JH 《Plant physiology》1973,51(4):714-717
The phenomenon of the etiolated hook is not restricted to the hypocotyl of the dicotyledenous plant (e.g., Phaseolus) but appears to serve a similar, adaptive function in the petioles of certain rhizomatous plants. The commonly employed regulants of hypocotyl hook opening were tested for their effect on the petiolar hook of Dentaria diphylla. The hook was found to require both light (red light promoted, far red inhibited) and the intact leaf for opening. The leaf requirement was fully replaced by gibberellic acid (0.04% in lanolin) but only in light; cobalt chloride (0.1-1.0 mm) promoted a partial opening in dark with or without leaf; and coumarin (1 mm), indoleacetic acid (1-4% in lanolin), and ethylene 10 microliter per liter all inhibited opening of hooks with or without lamina. The absolute requirement for light and leaf tissue and the replacement of proximal tissue by GA3 alone represent marked differences in the physiology of hypocotyl and petiolar hooks. These differences are believed to indicate the necessity for concomitant leaf maturation in petiolar hook opening.  相似文献   

12.
The effect of hypocotyl excision on red light-mediated betacyanininduction in cotyledons of Amaranthus caudatus L. was studiedusing etiolated, 3-day-old half-seedlings and isolated cotyledons.The removal of the hypocotyl promoted betacyanin formation undersafelight conditions in a manner competitive with brief (5 mins),but additive with prolonged (6 h) red illumination. If a papersupport was provided in order to improve the aeration, betacyaninformation in safelight conditions was further stimulated, reducingthe inductive effect of brief, but not changing the action ofprolonged red illumination. These results demonstrate that betacyaninphotoregulation is restricted to cotyledons of A. caudatus seedlings,with no evidence for transmission of light signals between differentorgans. Excision and aeration appear to promote selectivelya very low fluence response (VLFR) induced by safelight, suggestingdifferent mechanisms of phytochrome phototransduction underVLFR, low fluence response induced by brief saturating red light(LFR) and high irradiance reaction (HIR) occurring under prolongedred illumination. Amaranthus caudatus L, betacyanin photoregulation, red light, very low fluence phytochrome reaction  相似文献   

13.
Germination and growth of wild-type and two mutant strains (aux-1and Dwf) of Arabidopsis thaliana L. have been examined. Seedlingsof aux-1 exhibit agravitropic roots whereas Dwf display bothagravitropic roots and shoots. Wild-type seedlings retained the seed coat at the root-hypocotyltransition zone and developed hypocotyl hooks. In contrast,aux-I and Dwf seedlings did not retain their seed coats andlacked hypocotyl hooks. A positive gravitropic response of theroots was essential for the retention of the seed coat at theroot—hypocotyl transition zone by the attachment of roothairs to the seed coat. The development of the hypocotyl hookwas aided by the retention of the seed coat. The apical regionof the hypocotyl apparently remained agravitropic during formationand maintenance of the hypocotyl hook. Arabidopsis thaliana L., auxins, gravitropism, hypocotyl hook, mutants, peg formation, germination  相似文献   

14.
During seedling establishment, blue and red light suppress hypocotyl growth through the cryptochrome 1 (cry1) and phytochrome B (phyB) photosensory pathways, respectively. How these photosensory pathways integrate with growth control mechanisms to achieve the appropriate degree of stem elongation was investigated by combining cry1 and phyB photoreceptor mutations with genetic manipulations of a multidrug resistance‐like membrane protein known as ABCB19 that influenced auxin distribution within the plant, as evidenced by a combination of reporter gene assays and direct auxin measurements. Auxin signaling and ABCB19 protein levels, hypocotyl growth rates, and apical hook opening were measured in mutant and wild‐type seedlings exposed to a range of red and blue light conditions. Ectopic/overexpression of ABCB19 (B19OE) greatly increased auxin in the hypocotyl, which reduced the sensitivity of hypocotyl growth specifically to blue light in long‐term assays and red light in high‐resolution, short‐term assays. Loss of ABCB19 partially suppressed the cry1 hypocotyl growth phenotype in blue light. Hypocotyl growth of B19OE seedlings in red light was very similar to phyB mutants. Altered auxin distribution in B19OE seedlings also affected the opening of the apical hook. The cry1 and phyB photoreceptor mutations both increased ABCB19 protein levels at the plasma membrane, as measured by confocal microscopy. The B19OE plant proved to be a useful tool for determining aspects of the mechanism by which light, acting through cry1 or phyB, influences the auxin transport process to control hypocotyl growth during de‐etiolation.  相似文献   

15.
T. Heupel  U. Kutschera 《Protoplasma》1996,192(3-4):123-129
Summary To determine whether hypocotyl elongation in sunflower seedlings (Helianthus annuus L.) is dependent on cell divisions (meristematic activity), we used a specific inhibitor of DNA synthesis (fluorodeoxyuridine). The seedlings were either grown for 6 days in darkness or continuous white light (WL). Under both conditions hypocotyl growth was retarded by 30–70% in the presence of the inhibitor. Because the nuclei do not become endopolyploid we conclude that hypocotyl growth is dependent on cell reproduction. In the next step an immunocytochemical method was used to detect the percentage of nuclei in S-phase (meristematic activity) in different regions and tissues of the hypocotyls. In the peripheral cell layers (epidermis, cortex) meristematic activity was much greater than in the pith of the organ. In rapidly growing (etiolated) hypocotyls meristematic activity is largely restricted to the closed apical hook of the stem. After transfer to WL the hook opens and hypocotyl elongation is inhibited. In the epidermis and cortex of the apical hook a large WL-induced enhancement in the percentage of nuclei in S-phase occurred, which was followed by a light-mediated retardation of meristematic activity. Our data show that WL exerts a transient stimulatory effect on meristematic activity during photomorphogenesis of the sunflower seedling.Abbreviations BrdUrd 5-bromo-2-deoxyuridine - D darkness - FdUrd 5-fluoro-2-deoxyuridine - TRITC tetramethyl-rhodamine-isothiocyanate - WL white light  相似文献   

16.
E. Liscum  R. P. Hangarter 《Planta》1993,191(2):214-221
Fluence rate-response curves were generated for red-, far-red-, and blue-light-stimulated apical-hook opening in seedlings of several photomorphogenic mutants of Arabidopsis thaliana (L.) Heynh. Compared to wild-type plants, hook opening was reduced in the phytochrome-deficient hy1, hy2, and hy6 mutants in red and far-red light at all fluence rates tested, and in low-fluence blue light, but was normal under high-irradiance blue light. In contrast, the blue-light-response mutants (blu1, blu2, and blu3) lacked the high-irradiance-dependent hook-opening response in blue light while hook opening was normal in low-fluence blue light and in red and farred light at all fluence rates tested. Hook opening in the phytochrome-B-deficient hy3 mutant was similar to wild type in all light conditions tested. The effects of the different mutations on light-induced hook opening indicate that a phytochrome(s) other than phytochrome B mediates hook opening stimulated by red, far-red and lowfluence blue light, while a blue-light-absorbing photoreceptor mediates the blue-light-sensitive high-irradiance response. Although the phytochrome and blue-light photosensory systems appear to work independently for the most part, some of their signal-transduction components may interact since the hy4, and hy5 mutants showed reduced hook-opening responses under conditions dependent on the phytochrome and blue-light-photosensory systems.We thank Jeff Young and Brian Parks for their many helpful suggestions during the progress of this research. This work was supported by National Science Foundation Grant No. DCB-9106697.  相似文献   

17.
A neutral growth inhibitor, for which the name raphanusanin is proposed, has been isolated in crystalline form from light-exposed Sakurajima radish (Raphanus sativus var. hortensis f. gigantissimus Makino) seedlings and identified as a new compound, 3-methoxy-4-methylthio-2-piperithione by spectrometric analyses.

Applied raphanusanin inhibited the hypocotyl growth of etiolated radish and lettuce seedlings at concentrations higher than 1.5 × 10−6 molar.

The endogenous raphanusanin contents in cotyledons and hypocotyls of radish seedlings increased more under red light, but decreased or maintained the initial level in the dark. Its content in roots showed almost no change between the light and dark materials.

  相似文献   

18.
Dark-grown Arabidopsis seedlings develop an apical hook by differential elongation and division of hypocotyl cells. This allows the curved hypocotyl to gently drag the apex, which is protected by the cotyledons, upwards through the soil. Several plant hormones are known to be involved in hook development, including ethylene, which causes exaggeration of the hook. We show that gibberellins (GAs) are also involved in this process. Inhibition of GA biosynthesis with paclobutrazol (PAC) prevented hook formation in wild-type (WT) seedlings and in constitutive ethylene response (ctr)1-1, a mutant that exhibits a constitutive ethylene response. In addition, a GA-deficient mutant (ga1-3) did not form an apical hook in the presence of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Analysis of transgenic Arabidopsis seedlings expressing a green fluorescent protein (GFP)-repressor of ga1-3 (RGA) fusion protein suggested that ACC inhibits cell elongation in the apical hook by inhibition of GA signaling. A decreased feedback of GA possibly causes an induction of GA biosynthesis based upon the expression of genes encoding copalyl diphosphate synthase (CPS; GA1) and GA 2-oxidase (AtGA2ox1). Furthermore, expression of GASA1, a GA-response gene, suggests that differential cell elongation in the apical hook might be a result of differential GA-sensitivity.  相似文献   

19.
Summary The elongation of hypocotyl segments cut from etiolated Cucumis sativus seedlings is not affected by a single red light exposure at the start of the 20-hour growth period, but is inhibited by brief exposures repeated each hour or two even though these give no greater total energy. The inhibition is annulled if each red exposure is followed by far-red. The time course of phytochrome transformations in this tissue after a single red light exposure, followed spectrophotometrically, shows no anomalous characteristics that might correlate with the unusual pattern of responsiveness to red light. In intact seedlings, hypocotyl elongation responds similarly, but the opening of the hypocotyl hook is saturated by a single initial red light treatment. Excised hypocotyl segments on water alone appear insensitive to repeated red light treatment, but the growth increments caused by the addition of potassium ion, 2-propanol or cobaltous ion, or by leaving the cotyledons attached, are all inhibited roughly 40%. However, continuous white light inhibits the entire growth increment, reducing elongation to that of the water controls. Some implications of these results for current hypotheses and future investigations on the mechanisms of growth regulation by light are discussed.Research carried out in part at Brookhaven National Laboratory under the auspices of the U.S. Atomic Energy Commission and supported in part by Cancer Research Funds of the University of Califonia and by National Science Foundation Grant GB-3248 to WKP.  相似文献   

20.
Kutschera U  Niklas KJ 《Protoplasma》2012,249(4):1049-1057
Fifty years ago Max Kleiber described what has become known as the "mouse-to-elephant" curve, i.e., a log-log plot of basal metabolic rate versus body mass. From these data, "Kleiber's 3/4 law" was deduced, which states that metabolic activity scales as the three fourths-power of body mass. However, for reasons unknown so far, no such "universal scaling law" has been discovered for land plants (embryophytes). Here, we report that the metabolic rates of four different organs (cotyledons, cotyledonary hook, hypocotyl, and roots) of developing sunflower (Helianthus annuus L.) seedlings grown in darkness (skotomorphogenesis) and in white light (photomorphogenesis) differ by a factor of 2 to 5 and are largely independent of light treatment. The organ-specific respiration rate (oxygen uptake per minute per gram of fresh mass) of the apical hook, which is composed of cells with densely packaged cytoplasm, is much higher than that of the hypocotyl, an organ that contains vacuolated cells. Data for cell length, cell density, and DNA content reveal that (1) hook opening in white light is caused by a stimulation of cell elongation on the inside of the curved organ, (2) respiration, cell density and DNA content are much higher in the hook than in the stem, and (3) organ-specific respiration rates and the DNA contents of tissues are statistically correlated. We conclude that, due to the heterogeneity of the plant body caused by the vacuolization of the cells, Kleiber's law, which was deduced using mammals as a model system, cannot be applied to embryophytes. In plants, this rule may reflect scaling phenomena at the level of the metabolically active protoplasmic contents of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号