首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spontaneously occurring, nalidixic acid-resistant (NalR), thermotolerant (T/r) mutant ofEscherichia coli was isolated. Bacteriophage P1-mediated transduction showed that NalR mapped at or neargyr A, one of the two genes encoding DNA gyrase. Expression ofgyrA + from a plasmid rendered the mutant sensitive to nalidixic acid and to high temperature, the result expected for alleles mapping ingyrA. Plasmid linking number measurements, made with DNA from cells grown at 37° C or shifted to 48° C, revealed that supercoiling was about 12% less negative in the T/r mutant than in the parental strain. Each strain preferentially expressed two different proteins at 48° C. The genetic and supercoiling data indicate that thermo-tolerance can arise from an alteration in DNA gyrase that lowers supercoiling. This eubacterial study, when. coupled with those of archaebacteria, suggests that DNA relaxation is a general aspect of thermotolerance.  相似文献   

2.
Summary We isolated new gyrA and gyrB mutations in Escherichia coli which have a graded effect on DNA supercoiling. The mutants, selected respectively for resistance to nalidixic acid and coumermycin, were sorted by means of a rapid in vivo assay of DNA gyrase activity (Aleixandre and Blanco 1987). Cells carrying a gyrB (Cour) mutation usually showed a decrease in DNA supercoiling, which would indicate a reduction in gyrase activity. In contrast, most of the gyrA (Nalr) mutations had no significant effect on DNA supercoiling. Moreover, they conferred a high level of resistance to nalidixic acid and other quinolones, thus being similar to the gyrA(Nalr) mutants currently used. We also detected rare gyrA mutants showing a reduction in DNA gyrase activity. These mutants were, in addition, resistant to only low concentrations of quinolones, which allowed us to use the phenotype of partial quinolone resistance as an indicator to score gyrA mutations affecting DNA supercoiling. When gyrB mutations were introduced into the gyrA mutants, these became more sensitive to quinolones and a decrease in supercoiling was observed. Moreover, the topA10 mutation sensitized gyrA(Nalr) cells to quinolones. We conclude therefore that the GyrA-dependent quinolone resistance is diminished as a consequence of the reduction either in topoisomerase I or gyrase activities.  相似文献   

3.
Summary To investigate the interaction of subunits A and B of DNA gyrase during DNA supercoiling, a Cour mutant of Escherichia coli was obtained and the effect of nalidixic acid on the supercoiling of DNA by wild-type and mutant enzymes was assayed. The enzyme of the Cour strain proved to be more sensitive to nalidixic acid than the wild-type DNA gyrase. Hence the mutation affecting the B subunit can also change the properties of the A subunit, which fact suggests that the two subunits of DNA gyrase are in contact during DNA supercoiling.  相似文献   

4.
We report here that in Escherichia coli, the anti-bacterial agent nalidixic acid induces transient stabilization and increased synthesis of σ32, accompanied by the induction of heat shock proteins (Dnak and GroEL proteins). The induction of heat shock proteins, increased synthesis of σ32, and stabilization of σ32 observed on treatment of wild-type cells with nalidixic acid were not observed in a nalA26 mutant, a strain that is resistant to nalidixic acid as the result of a mutation in the gyrA gene. Not only oxolinic acid, but also novobiocin, whose targets are the A and B subunits of DNA gyrase, respectively, also induced stabilization and increased synthesis of σ32. Thus, inhibition of the activity of DNA gyrase may cause stabilization and increased synthesis of σ32, resulting in turn in induction of heat shock proteins.  相似文献   

5.
Interaction of DNA gyrase A- and B-subunits during the process of DNA supercoiling was studied. For this purpose a E. coli Cour-1 mutant resistant to coumermycin and containing a mutation in the B-subunit of DNA gyrase was isolated and the influence of the DNA gyrase A-subunit specific inhibitor-nalidixic acid-on DNA supercoiling by wild-type and mutant enzymes was investigated. It turned out that the enzyme from the Cour-1 mutant strain was more sensitive to nalidixic acid than the DNA gyrase from the wild-type strain. Hence, the mutation affecting the B-subunit is capable to change A-subunit properties. That makes it possible to draw the conclusion about a close structural interaction of DNA gyrase subunits during DNA supercoiling.  相似文献   

6.
Heat treatment of wild-type Escherichia coli cells led to a transient relaxation of negatively supercoiled plasmid DNA and there was no recovery of DNA torsional strain in the DNA in gyrA mutant cells. After heat treatment, DnaK and GroEL proteins were synthesized continuously in the gyrA mutant cells, whereas they were synthesized only transiently in wild-type cells. Thus, change in superhelical density of the DNA correlated with the temperature-induced expression of heat shock proteins. Inhibitors of DNA gyrase (nalidixic acid, novobiocin), an organic solvent (ethanol) and a psychotropic drug (chlorpromazine) all stimulated relaxation of cellular DNA over the same concentration range that induces heat shock proteins. As DNA relaxation was induced by heat treatment or chemicals in an rpoH mutant, the process is not the result of induced synthesis of heat shock proteins.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nalr) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nalr strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Strr) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nalr clone has a lower growth rate than the Strr isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nalr clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.  相似文献   

8.
9.
    
 We report here that in Escherichia coli, the anti-bacterial agent nalidixic acid induces transient stabilization and increased synthesis of σ32, accompanied by the induction of heat shock proteins (Dnak and GroEL proteins). The induction of heat shock proteins, increased synthesis of σ32, and stabilization of σ32 observed on treatment of wild-type cells with nalidixic acid were not observed in a nalA26 mutant, a strain that is resistant to nalidixic acid as the result of a mutation in the gyrA gene. Not only oxolinic acid, but also novobiocin, whose targets are the A and B subunits of DNA gyrase, respectively, also induced stabilization and increased synthesis of σ32. Thus, inhibition of the activity of DNA gyrase may cause stabilization and increased synthesis of σ32, resulting in turn in induction of heat shock proteins. Received: 11 July 1996 / Accepted: 16 August 1996  相似文献   

10.
A mutant gyrA allele resulting in an A271E substitution in the DNA gyrase protein generated a strain unable to grow on the C(4)-dicarboxylates succinate, malate, and fumarate. Bacteria harboring gyrA751 displayed decreased negative supercoiling in cells. Expression of the dctA gene, which encodes the C(4)-dicarboxylate transporter, was reduced in a gyrA751 mutant, providing the first evidence that dctA expression is supercoiling sensitive and uncovering a simple metabolic screen for lesions in gyrase that reduce negative supercoiling.  相似文献   

11.
DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4–5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic‐membrane‐located inhibitor of proton‐driven F1F0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin‐resistant (NovR) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with NovR gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug‐treated bacteria. The Salmonella cytosol reaches pH 5–6 in response to an external pH of 4–5: the ATP‐dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP‐dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid‐mediated impairment of the negative supercoiling activity of gyrase.  相似文献   

12.
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nalr strain) and one streptomycin-resistant strain (the 02-833L Strr strain). In vitro binding assays revealed that the C. jejuni F38011 Nalr and 02-833L Strr strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Strr strain relative to that of the C. jejuni F38011 Nalr strain competitively inhibited the binding of the C. jejuni F38011 Nalr strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Strr strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nalr strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum.  相似文献   

13.
14.
Nalidixic acid-resistant mutants ofEscherichia coli CGSC #6353 capable of growth at 48°C were obtained by mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine. Cotransductional analyses employing phage P1 indicated that the mutation resulting in the phenotype of growth at 48°C is an allele of thegyrA structural gene. Similar thermal inactivation kinetics were observed for ribosomes isolated from a thermotolerant (T/r) mutant grown at both 37°C and 48°C and from the parental strain grown at 37°C. Cell-free extracts prepared from the T/r mutant grown at 48°C exhibited a sharp increase in protein synthesis at 55°C, whereas this effect was not displayed by extracts from the mutant or parental strains grown at 37°C. In addition, preincubation at 55°C enhanced protein synthesis at 37°C up to 15-fold in an extract prepared from the T/r mutant grown at 48°C, whereas comparable values were 2.6- to 3.0-fold for extracts from the mutant and parental strains grown at 37°C.  相似文献   

15.
Negative supercoiling of plasmid DNA in Escherichia coli cells can decrease transiently when exposed to heat shock. The effect of cold shock on DNA supercoiling was examined, and analysis by agarose gel electrophoresis in the presence of chloroquine revealed that negative supercoiling of plasmid DNA in cells increased when cells were exposed to cold shock. This increase was transient and was nil when the cells were pretreated with nalidixic acid, an inhibitor of DNA gyrase. In a mutant deficient in expression of HU protein, the increase in negative supercoiling of DNA by cold shock is less apparent than in wild-type cells. It is proposed that DNA gyrase and HU protein have a role in the DNA supercoiling reaction seen with cold shock.  相似文献   

16.
The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.  相似文献   

17.
Wild-type bacteriophage T4 and DNA-delay am mutants defective in genes 39, 52, 60 and 58–61 were tested for intracellular sensitivity to the antibiotics coumermycin and novobiocin, drugs which inhibit the DNA gyrase of Escherichia coli. Treatment with these antibiotics drastically reduced the characteristic growth of gene 39, 52 and 60 DNA-delay am mutants in E. coli lacking an amber suppressor (su?). Wild-type phage-infected cells were unaffected by the drugs while the burst size of a gene 58–61 mutant was affected to an intermediate extent. A su?E. coli strain which is resistant to coumermycin due to an altered gyrase permitted growth of the DNA-delay am mutants in the presence of the drug. Thus, the characteristic growth of the DNA-delay am mutants in an su? host apparently depends on the host gyrase. An E. coli himB mutant is defective in the coumermycin-sensitive subunit of gyrase (H. I. Miller, personal communication). Growth of the gene 39, 52 and 60 am mutants was inhibited in the himB mutant while the gene 58–61 mutant and wild-type T4 showed small reductions in burst size in this host. Experiments with nalidixic acid-sensitive and resistant strains of E. coli show that wild-type phage T4 requires a functional nalA protein for growth.Novobiocin and coumermycin inhibit phage DNA synthesis in DNA-delay mutant-infected su?E. coli if added during the early logarithmic phase of phage DNA synthesis. The gene 58–61 mutant showed the smallest inhibition of DNA synthesis in the presence of the drugs. Addition of the drugs during the late linear phase of phage DNA synthesis had no effect on further synthesis in DNA-delay mutant-infected cells. Coumermycin and novobiocin had no effect on DNA synthesis in wild-type-infected cells regardless of the time of addition of the antibiotics. Models are considered in which the DNA-delay gene products either form an autonomous phage gyrase or interact with the host gyrase and adapt it for proper initiation of phage DNA replication.  相似文献   

18.
Novel 3′-piperazinyl derivatives of the 8-hydrogeno and 8-methoxy-6-fluoro-1-cyclopropyl-4-quinolone-3-carboxylic acid scaffolds were designed, synthesized and characterized by 1H, 13C and 19F NMR, and HRMS. The activity of these derivatives against pathogenic mycobacteria (M. leprae and M. tuberculosis), wild-type (WT) strains or strains harboring mutations implicated in quinolone resistance, were determined by measuring drug concentrations inhibiting cell growth (MIC) and/or DNA supercoiling by DNA gyrase (IC50), or inducing 25% DNA cleavage by DNA gyrase (CC25). Compound 4 (with a methoxy in R8 and a secondary carbamate in R3′) and compound 5 (with a hydrogen in R8 and an ethyl ester in R3′) displayed biological activities close to those of ofloxacin but inferior to those of gatifloxacin and moxifloxacin against M. tuberculosis and M. leprae WT DNA gyrases, whereas all of the compounds were less active in inhibiting M. tuberculosis growth and M. leprae mutant DNA gyrases. Since R3′ substitutions have been poorly investigated previously, our results may help to design new quinolone derivatives in the future.  相似文献   

19.
We examined the influence of overexpression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor ofEscherichia coli, on DNA supercoiling and induction of heat shock proteins. Cells were transformed with a plasmid carrying the structural gene for LetD protein under control of thetac promoter, and LetD protein was induced by adding isopropylβ-d-thiogalactopyranoside (IPTG) to the culture medium. Analysis by agarose gel electrophoresis in the presence of chloroquine revealed relaxation of plasmid DNA in cells depending on the concentration of IPTG employed for induction. Protein pulse-labeling experiments with [35S]methionine and cysteine revealed that synthesis of DnaK and GroEL proteins was also induced by IPTG, and concentrations necessary for DNA relaxation and induction of the heat shock proteins were much the same. Expression of mutant LetD protein lacking two amino acid residues at the C-terminus induced neither DNA relaxation nor the synthesis of DnaK and GroEL proteins. Induction of wild-type LetD protein but not mutant LetD protein markedly enhanced synthesis ofσ 32. We interpret these results to mean that DNA relaxation in cells caused by the expression of LetD protein induces heat shock proteins via increased synthesis ofσ 32.  相似文献   

20.
Bradyrhizobium sp. strain 32H1 cells express a number of bacteroid-associated functions and repress some functions related to the free-living state when grown ex planta under conditions of low (0.2%) oxygen tension and relatively high levels (>8 mM) of medium K+. Expression of the bacteroid-associated phenotype was blocked by the DNA gyrase inhibitor novobiocin. Because the degree of negative supercoiling of DNA is the result of the activities of both DNA gyrase and topoisomerase I, we measured these enzymes in cells grown under nitrogen-fixing (low O2, high K+) and non-nitrogen-fixing conditions (low O2, low [50 μM] K+ or high O2, high K+). Lower topoisomerase I activities were seen in extracts from nitrogen-fixing cells than in those from non-nitrogen-fixing cells. In contrast, DNA gyrase levels were lower in high-O2-grown cells than under the other conditions tested. These differences are consistent with an increase in DNA superhelicity associated with growth under low-O2, high-K+ conditions. A spontaneous mutant resistant to the DNA gyrase inhibitor ciprofloxacin was found to be constitutive with respect to the K+ requirement, because it expressed the bacteroid-associated phenotype when grown under low-O2, low-K+ conditions. The mutant cells gave rise to effective nodules on Macroptilium atropurpureum and possessed the low topoisomerase I activities and high DNA gyrase levels of low-O2-, high-K+-grown wild-type cells. Our data suggest that changes in DNA supercoiling resulting from low O2 tension and a high K+ concentration exert a major influence on the expression of the bacteroid-associated phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号