首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
We deal in this paper with the concept of genetic regulation network. The genes expression observed through the bio-array imaging allows the geneticist to obtain the intergenic interaction matrix W of the network. The interaction graph G associated to W presents in general interesting features like connected components, gardens of Eden, positive and negative circuits (or loops), and minimal components having 1 positive and 1 negative loop called regulons. Depending on parameters values like the connectivity coefficient K(W) and the mean inhibition weight I(W), the genetic regulation network can present several dynamical behaviours (fixed configuration, limit cycle of configurations) called attractors, when the observation time increases. We give some examples of such genetic regulation networks and analyse their dynamical properties and their biological consequences.  相似文献   

2.
This theoretical work shows that the rate constant for the (18)F-FDG release in tissues can be assessed without needing any arterial blood sampling. The method requires that the clearance of (18)F-FDG from plasma has occurred, whereas (18)F-FDG is still present in the tissue. This condition can be met dating from 3 h after (18)F-FDG injection, when hydration and/or phlorizin injection are applied after the routine static acquisition. The release rate constant can be obtained from a graphical analysis performed at the later decreasing phase of the tissue tracer activity. A two-compartment and a three-compartment model are developed, both in accordance with one another. To cite this article: E. Laffon et al., C. R. Biologies 328 (2005).  相似文献   

3.
We consider some mathematical issues raised by the modelling of gene networks. The expression of genes is governed by a complex set of regulations, which is often described symbolically by interaction graphs. These are finite oriented graphs where vertices are the genes involved in the biological system of interest and arrows describe their interactions: a positive (resp. negative) arrow from a gene to another represents an activation (resp. inhibition) of the expression of the latter gene by some product of the former. Once such an interaction graph has been established, there remains the difficult task to decide which dynamical properties of the gene network can be inferred from it, in the absence of precise quantitative data about their regulation. There mathematical tools, among others, can be of some help. In this paper we discuss a rule proposed by Thomas according to which the possibility for the network to have several stationary states implies the existence of a positive circuit in the corresponding interaction graph. We prove that, when properly formulated in rigorous terms, this rule becomes a theorem valid for several different types of formal models of gene networks. This result is already known for models of differential [C. Soulé, Graphic requirements for multistationarity, ComPlexUs 1 (2003) 123-133] or Boolean [E. Rémy, P. Ruet, D. Thieffry, Graphic requirements for multistability and attractive cycles in a boolean dynamical framework, 2005, Preprint] type. We show here that a stronger version of it holds in the differential setup when the decay of protein concentrations is taken into account. This allows us to verify also the validity of Thomas' rule in the context of piecewise-linear models. We then discuss open problems.  相似文献   

4.
5.
Fructose bisphosphatase catalyzes a key reaction of gluconeogenesis. We have cloned the fructose bisphosphatase (FBP1) structural gene from Saccharomyces cerevisiae by screening a genomic library for complementation of an Escherichia coli fbp deletion mutation. The cloned DNA expresses in E. coli a fructose bisphosphatase activity which is precipitable with antibodies specific for the yeast enzyme and is sensitive to inhibition by fructose 2,6-bisphosphate. Evidence is presented demonstrating that the entire gene, including all cis-acting regulatory sequences, has been cloned. A substitution mutation that disrupts FBP1 was incorporated into the yeast genome by transplacement to construct a fructose bisphosphatase null mutation. The fbp1 mutant strain is a hexose auxotroph, otherwise growing normally. Southern blot hybridization analysis confirmed the structure of the transplacement and demonstrated that FBP1 is present in single copy in the haploid genome. Northern blot hybridization analysis revealed an mRNA of about 1350 nucleotides, whose presence was repressible by glucose in the medium. Fructose bisphosphatase activity was not greatly overproduced when the FBP1 gene was present on a multicopy vector in yeast.  相似文献   

6.
7.
In the frame of the largest French project of artificial production reefs, initiated by the city of Marseilles in 2001, the present study aimed at describing the hydrodynamic pattern of the coastal area considered, by the use of a 3D numerical modelling. Results were local wind statistics, bottom current fields and drifting particle maps. The knowledge of the hydrodynamic connexions between particle (such as larvae) sources or targeted areas linked to the reefs, allows us to explain the success or failure of the reefs' colonizing. Moreover, the study confirms the wind spatial variability and demonstrates the error resulting from the use of an average but locally absent wind direction.  相似文献   

8.
9.
Madtsoiids constitute a successful group of extinct snakes widely distributed across Gondwana and the European archipelago during Late Cretaceous times, surviving in reduced numbers to the Pleistocene. They are renowned for including some of the largest snakes that have ever crawled on earth, yet diverse small madtsoiids are also known. Uncovering the evolutionary trends that led these snakes into disparate body sizes has been hampered mainly by the lack of phylogenetic consensus and the paucity of taxa with novel combinations of features. Here we describe a new large madtsoiid snake based on isolated vertebrae from the La Colonia Formation (Maastrichtian–Danian) of Patagonia, Argentina. A comprehensive phylogenetic analysis recovers Madtsoiidae as a basal ophidian lineage and the new snake as sister to a clade of mostly big-to-gigantic taxa, providing insights into early stages and evolutionary trends towards madtsoiid gigantism.  相似文献   

10.
11.
12.
13.
Heterologous expression of Integral Membrane Proteins (IMPs) is reported to be toxic to the host system in many studies. Even though there are reports on various concerns like transformation efficiency, growth properties, protein toxicity, inefficient expression and protein degradation in IMP overexpression, no studies so far addressed these issues in a comprehensive way. In the present study, two transmembrane proteins of the pathogen Leptospira interrogans, namely Signal peptidase (SP), and Leptospira Endostatin like A (Len-A) were taken along with a cytosolic protein Hydrolase (HYD) to assess the differences in transformation efficiency, protein toxicity, and protein stability when over expressed in Escherichia coli (E. coli). Bioinformatics analysis to predict the transmembrane localization indicated that both SP and Len are targeted to the membrane. The three proteins were expressed in full length in the E. coli expression strain, BL 21 (DE3). Significant changes were observed for the strains transformed with IMP genes under the parameters analysed such as, the transformation efficiency, survival of colonies on IPTG-plate, culture growth kinetics and protein expression compared to the strain harbouring the cytosolic protein gene.  相似文献   

14.
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the “reprogramming” of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号