首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Recent enhancements and current research in the GeneCards (GC) (http://bioinfo.weizmann.ac.il/cards/) project are described, including the addition of gene expression profiles and integrated gene locations. Also highlighted are the contributions of specialized associated human gene-centric databases developed at the Weizmann Institute. These include the Unified Database (UDB) (http://bioinfo.weizmann.ac.il/udb) for human genome mapping, the human Chromosome 21 database at the Weizmann Insti-tute (CroW 21) (http://bioinfo.weizmann.ac.il/crow21), and the Human Olfactory Receptor Data Explora-torium (HORDE) (http://bioinfo.weizmann.ac.il/HORDE). The synergistic relationships amongst these efforts have positively impacted the quality, quantity and usefulness of the GeneCards gene compendium.  相似文献   

3.
Protein-protein interfaces are regions between 2 polypeptide chains that are not covalently connected. Here, we have created a nonredundant interface data set generated from all 2-chain interfaces in the Protein Data Bank. This data set is unique, since it contains clusters of interfaces with similar shapes and spatial organization of chemical functional groups. The data set allows statistical investigation of similar interfaces, as well as the identification and analysis of the chemical forces that account for the protein-protein associations. Toward this goal, we have developed I2I-SiteEngine (Interface-to-Interface SiteEngine) [Data set available at http://bioinfo3d.cs.tau.ac.il/Interfaces; Web server: http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine]. The algorithm recognizes similarities between protein-protein binding surfaces. I2I-SiteEngine is independent of the sequence or the fold of the proteins that comprise the interfaces. In addition to geometry, the method takes into account both the backbone and the side-chain physicochemical properties of the interacting atom groups. Its high efficiency makes it suitable for large-scale database searches and classifications. Below, we briefly describe the I2I-SiteEngine method. We focus on the classification process and the obtained nonredundant protein-protein interface data set. In particular, we analyze the biological significance of the clusters and present examples which illustrate that given constellations of chemical groups in protein-protein binding sites may be preferred, and are observed in proteins with different structures and different functions. We expect that these would yield further information regarding the forces stabilizing protein-protein interactions.  相似文献   

4.
5.
We present and review coupled two-way clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis. AVAILABILITY: Free, at http://ctwc.weizmann.ac.il.. SUPPLEMENTARY INFORMATION: http://www.weizmann.ac.il/physics/complex/compphys/bioinfo2/  相似文献   

6.
SUMMARY: We recently developed algorithmic tools for the identification of functionally important regions in proteins of known three dimensional structure by estimating the degree of conservation of the amino-acid sites among their close sequence homologues. Projecting the conservation grades onto the molecular surface of these proteins reveals patches of highly conserved (or occasionally highly variable) residues that are often of important biological function. We present a new web server, ConSurf, which automates these algorithmic tools. ConSurf may be used for high-throughput characterization of functional regions in proteins. AVAILABILITY: The ConSurf web server is available at:http://consurf.tau.ac.il. SUPPLEMENTARY INFORMATION: A set of examples is available at http://consurf.tau.ac.il under 'GALLERY'.  相似文献   

7.
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2006,62(1):209-217
Routinely used multiple-sequence alignment methods use only sequence information. Consequently, they may produce inaccurate alignments. Multiple-structure alignment methods, on the other hand, optimize structural alignment by ignoring sequence information. Here, we present an optimization method that unifies sequence and structure information. The alignment score is based on standard amino acid substitution probabilities combined with newly computed three-dimensional structure alignment probabilities. The advantage of our alignment scheme is in its ability to produce more accurate multiple alignments. We demonstrate the usefulness of the method in three applications: 1) computing more accurate multiple-sequence alignments, 2) analyzing protein conformational changes, and 3) computation of amino acid structure-sequence conservation with application to protein-protein docking prediction. The method is available at http://bioinfo3d.cs.tau.ac.il/staccato/.  相似文献   

8.
Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. SymmRef is available for download at http:// bioinfo3d.cs.tau.ac.il/SymmRef/download.html.  相似文献   

9.
We present a set of geometric docking algorithms for rigid, flexible, and cyclic symmetry docking. The algorithms are highly efficient and have demonstrated very good performance in CAPRI Rounds 3-5. The flexible docking algorithm, FlexDock, is unique in its ability to handle any number of hinges in the flexible molecule, without degradation in run-time performance, as compared to rigid docking. The algorithm for reconstruction of cyclically symmetric complexes successfully assembles multimolecular complexes satisfying C(n) symmetry for any n in a matter of minutes on a desktop PC. Most of the algorithms presented here are available at the Tel Aviv University Structural Bioinformatics Web server (http://bioinfo3d.cs.tau.ac.il/).  相似文献   

10.
Sample classification and class prediction is the aim of many gene expression studies. We present a web-based application, Prophet, which builds prediction rules and allows using them for further sample classification. Prophet automatically chooses the best classifier, along with the optimal selection of genes, using a strategy that renders unbiased cross-validated errors. Prophet is linked to different microarray data analysis modules, and includes a unique feature: the possibility of performing the functional interpretation of the molecular signature found. Availability: Prophet can be found at the URL http://prophet.bioinfo.cipf.es/ or within the GEPAS package at http://www.gepas.org/ Supplementary information: http://gepas.bioinfo.cipf.es/tutorial/prophet.html.  相似文献   

11.
MetaReg http://acgt.cs.tau.ac.il/metareg/application.html is a computational tool that models cellular networks and integrates experimental results with such models. MetaReg represents established knowledge about a biological system, available today mostly in informal form in the literature, as probabilistic network models with underlying combinatorial regulatory logic. MetaReg enables contrasting predictions with measurements, model improvements and studying what-if scenarios. By summarizing prior knowledge and providing visual and computational aids, it helps the expert explore and understand her system better.  相似文献   

12.
13.
Predicting the various binding sites of a protein from its structure sheds light on its function and paves the way towards design of interaction inhibitors. Here, we report ScanNet, a freely available web server for prediction of protein–protein, protein - disordered protein and protein - antibody binding sites from structure. ScanNet (Spatio-Chemical Arrangement of Neighbors Network) is an end-to-end, interpretable geometric deep learning model that learns spatio-chemical patterns directly from 3D structures. ScanNet consistently outperforms Machine Learning models based on handcrafted features and comparative modeling approaches. The web server is linked to both the PDB and AlphaFoldDB, and supports user-provided structure files. Predictions can be readily visualized on the website via the Molstar web app and locally via ChimeraX. ScanNet is available at http://bioinfo3d.cs.tau.ac.il/ScanNet/.  相似文献   

14.
MOTIVATION: Using bioinformatic approaches we aimed to characterize poorly understood abnormalities in splicing known as exon scrambling, exon repetition and trans-splicing. RESULTS: We developed a software package that allows large-scale comparison of all human expressed sequence tags (EST) sequences to the entire set of human gene sequences. Among 5,992,495 EST sequences, 401 cases of exon repetition and 416 cases of exon scrambling were found. The vast majority of identified ESTs contain fragments rather than full-length repeated or scrambled exons. Their structures suggest that the scrambled or repeated exon fragments may have arisen in the process of cDNA cloning and not from splicing abnormalities. Nevertheless, we found 11 cases of full-length exon repetition showing that this phenomenon is real yet very rare. In searching for examples of trans-splicing, we looked only at reproducible events where at least two independent ESTs represent the same putative trans-splicing event. We found 15 ESTs representing five types of putative trans-splicing. However, all 15 cases were derived from human malignant tissues and could have resulted from genomic rearrangements. Our results provide support for a very rare but physiological occurrence of exon repetition, but suggest that apparent exon scrambling and trans-splicing result, respectively, from in vitro artifact and gene-level abnormalities. AVAILABILITY: Exon-Intron Database (EID) is available at http://www.meduohio.edu/bioinfo/eid. Programs are available at http://www.meduohio.edu/bioinfo/software.html. The Laboratory website is available at http://www.meduohio.edu/medicine/fedorov Supplementary information: Supplementary file is available at http://www.meduohio.edu/bioinfo/software.html.  相似文献   

15.
16.
SUMMARY: SelSim is a program for Monte Carlo simulation of DNA polymorphism data for a recombining region within which a single bi-allelic site has experienced natural selection. SelSim allows simulation from either a fully stochastic model of, or deterministic approximations to, natural selection within a coalescent framework. A number of different mutation models are available for simulating surrounding neutral variation. The package enables a detailed exploration of the effects of different models and strengths of selection on patterns of diversity. This provides a tool for the statistical analysis of both empirical data and methods designed to detect natural selection. AVAILABILITY: http://www.stats.ox.ac.uk/mathgen/software.html. SUPPLEMENTARY INFORMATION: http://www.stats.ox.ac.uk/mathgen/software.html.  相似文献   

17.
MOTIVATION: Accurate detection of positive Darwinian selection can provide important insights to researchers investigating the evolution of pathogens. However, many pathogens (particularly viruses) undergo frequent recombination and the phylogenetic methods commonly applied to detect positive selection have been shown to give misleading results when applied to recombining sequences. We propose a method that makes maximum likelihood inference of positive selection robust to the presence of recombination. This is achieved by allowing tree topologies and branch lengths to change across detected recombination breakpoints. Further improvements are obtained by allowing synonymous substitution rates to vary across sites. RESULTS: Using simulation we show that, even for extreme cases where recombination causes standard methods to reach false positive rates >90%, the proposed method decreases the false positive rate to acceptable levels while retaining high power. We applied the method to two HIV-1 datasets for which we have previously found that inference of positive selection is invalid owing to high rates of recombination. In one of these (env gene) we still detected positive selection using the proposed method, while in the other (gag gene) we found no significant evidence of positive selection. AVAILABILITY: A HyPhy batch language implementation of the proposed methods and the HIV-1 datasets analysed are available at http://www.cbio.uct.ac.za/pub_support/bioinf06. The HyPhy package is available at http://www.hyphy.org, and it is planned that the proposed methods will be included in the next distribution. RDP2 is available at http://darwin.uvigo.es/rdp/rdp.html  相似文献   

18.
Network propagation is a powerful tool for genetic analysis which is widely used to identify genes and genetic modules that underlie a process of interest. Here we provide a graphical, web-based platform (http://anat.cs.tau.ac.il/WebPropagate/) in which researchers can easily apply variants of this method to data sets of interest using up-to-date networks of protein–protein interactions in several organisms.  相似文献   

19.
Proteins are highly flexible molecules. Prediction of molecular flexibility aids in the comprehension and prediction of protein function and in providing details of functional mechanisms. The ability to predict the locations, directions, and extent of molecular movements can assist in fitting atomic resolution structures to low-resolution EM density maps and in predicting the complex structures of interacting molecules (docking). There are several types of molecular movements. In this work, we focus on the prediction of hinge movements. Given a single protein structure, the method automatically divides it into the rigid parts and the hinge regions connecting them. The method employs the Elastic Network Model, which is very efficient and was validated against a large data set of proteins. The output can be used in applications such as flexible protein-protein and protein-ligand docking, flexible docking of protein structures into cryo-EM maps, and refinement of low-resolution EM structures. The web server of HingeProt provides convenient visualization of the results and is available with two mirror sites at http://www.prc.boun.edu.tr/appserv/prc/HingeProt3 and http://bioinfo3d.cs.tau.ac.il/HingeProt/.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号