共查询到20条相似文献,搜索用时 15 毫秒
1.
An aerobic diethyl phthalate (DEP) degrading bacterium, DEP-AD1, was isolated from activated sludge. Based on its 16S rDNA sequence, this isolate was identified belonging to Sphingomonas genus with 99% similarity to Sphingomonas sp. strain C28242 and 98% similarity to S. capsulate. The specific degradation rate of DEP was concentration dependent with a maximum of 14 mg-DEP/(Lh). Results of degradation tests showed that DEP-AD1 could also degrade monoethyl phthalate (MEP), dimethyl phthalate (DMP), dibutyl phthalate (DBP), and diethylhexyl phthalate (DEHP), but not phthalate and benzoate. 相似文献
2.
S. Pradeep P. Faseela M. K. Sarath Josh S. Balachandran R. Sudha Devi Sailas Benjamin 《Biodegradation》2013,24(2):257-267
This unique study describes how Aspergillus japonicus, Penicillium brocae and Purpureocillium lilacinum, three novel isolates of our laboratory from heavily plastics-contaminated soil completely utilized the plasticizer di(2-ethylhexyl)phthalate (DEHP) bound to PVC blood storage bags (BB) in simple basal salt medium (BSM) by static submerged growth (28 °C). Initial quantification as well as percentage utilization of DEHP blended to BB were estimated periodically by extracting it into n-hexane. A two-stage cultivation strategy was employed for the complete mycoremediation of DEHP from BB in situ. During the first growth stage, about two-third parts of total (33.5 % w/w) DEHP bound to BB were utilized in two weeks, accompanied by increased fungal biomass (~0.15–0.32 g per g BB) and sharp declining (to ~3) of initial pH (7.2). At this stagnant growth state (low pH), spent medium was replaced by fresh BSM (pH, 7.2), and thus in the second stage the remaining DEHP (one-third) in BB was utilized completely. The ditches and furrows seen from the topology of the BB as seen by the 3D AFM image further confirmed the bioremediation of DEHP physically bound to BB in situ. Of the three mycelial fungi employed, P. lilacinum independently showed highest efficiency for the complete utilization of DEHP bound to BB, whose activity was comparable to that of the consortium comprising all the three fungi described herein. To sum up, the two-stage cultivation strategy demonstrated in this study shows that a batch process would efficiently remediate the phthalic acid esters blended in plastics on a large scale, and thus it offers potentials for the management of plastics wastes. 相似文献
3.
Biodegradation of diethyl phthalate in soil by a novel pathway 总被引:12,自引:0,他引:12
Biodegradation of diethyl phthalate (DEP) has been shown to occur as a series of sequential steps common to the degradation of all phthalates. Primary degradation of DEP to phthalic acid (PA) has been reported to involve the hydrolysis of each of the two diethyl chains of the phthalate to produce the monoester monoethyl phthalate (MEP) and then PA. However, in soil co-contaminated with DEP and MeOH, biodegradation of the phthalate to PA resulted in the formation of three compounds, in addition to MEP. These were characterised by gas chromatography-electron ionisation mass spectrometry and nuclear magnetic resonance as ethyl methyl phthalate, dimethyl phthalate and monomethyl phthalate, and indicated the existence of an alternative pathway for the degradation of DEP in soil co-contaminated with MeOH. Transesterification or demethylation were proposed as the mechanisms for the formation of the three compounds, although the 7:1 ratio of H(2)O to MeOH means that transesterification is unlikely. 相似文献
4.
Yingxia Tang Yongming Zhang Ling Jiang Chao Yang Bruce E. Rittmann 《Biodegradation》2017,28(5-6):413-421
The aerobic biodegradation of dimethyl phthalate (DMP) is initiated with two hydrolysis reactions that generate an intermediate, phthalic acid (PA), that is further biodegraded through a two-step di-oxygenation reaction. DMP biodegradation is inhibited when PA accumulates, but DMP’s biodegradation can be enhanced by adding an exogenous electron donor. We evaluated the effect of adding succinate, acetate, or formate as an exogenous electron donor. PA removal rates were increased by 15 and 30% for initial PA concentrations of 0.3 and 0.6 mM when 0.15 and 0.30 mM succinate, respectively, were added as exogenous electron donor. The same electron-equivalent additions of acetate and formate had the same acceleration impacts on PA removal. Consequently, the DMP-removal rate, even PA coexisting with DMP simultaneously, was accelerated by 37% by simultaneous addition of 0.3 mM succinate. Thus, lowering the accumulation of PA by addition of an electron increased the rate of DMP biodegradation. 相似文献
5.
In this study, white rot fungus, Polyporus brumalis, was applied to degrade dibutyl phthalate (DBP), a major environmental pollutant. The degradation potential and resulting products were evaluated with HPLC and GC/MS. As DBP concentration increased to 250, 750, and 1,250 microM, the mycelial growth of P. brumalis was inhibited. However, growth was still observed in the 1,250 microM concentration. DBP was nearly eliminated from culture medium of P. brumalis within 12 days, with 50% of DBP adsorbed by the mycelium. Diethyl phthalate (DEP) and monobutyl phthalate (MBP) were detected as intermediate degradation products of DBP. In culture medium, the concentration of DEP was higher than that of MBP during the incubation period. After 12-15 days, the concentrations of both decreased rapidly in the culture medium. The primary final degradation product of DBP in culture medium was phthalic acid anhydride, as well as trace amounts of aromatic compounds, such as alpha-hydroxyphenylacetic acid, benzyl alcohol, and O-hydroxyphenylacetic acid. According to these results, the degradation of DBP in culture medium by the white rot fungus, P. brumalis, may be completed through two pathways-transesterification and de-esterification-which successively combine into an intracellular degradation pathway. 相似文献
6.
Areeya NavacharoenAlisa S. Vangnai 《International biodeterioration & biodegradation》2011,65(6):818-826
The contamination and distribution of phthalate esters - synthetic compounds widely used in plastic product production, including food and medical packaging - has raised safety concerns due to their endocrine-disrupting activity and mandated to be treated. Bacillus subtilis strain 3C3, isolated as an organic-solvent-tolerant bacterium, was capable of utilizing diethyl phthalate as a sole carbon source. Biodegradation of diethyl phthalate occurred constitutively without lag period, and its kinetics followed a first-order model. The biodegradability was significantly enhanced with the supplementation of yeast extract as a co-metabolic substrate. In the presence of Tween-80 as a solubilizing agent, cells rapidly degrade a range of short-chain phthalate esters at high concentrations (up to 1000 mg l−1 for diethyl phthalate). The biodegradation of short-chain phthalates in the binary, ternary and quaternary substrate system revealed that the coexistence of other short-chain phthalates had no significant influence on the biodegradation of diethyl phthalate, and vice versa. These results substantiated that B. subtilis strain 3C3 has potential application as a bioaugmented bacterial culture for bioremediation of phthalates. 相似文献
7.
A direct competitive enzyme-linked immunosorbent assay by antibody coated for diethyl phthalate analysis 总被引:1,自引:0,他引:1
A direct competitive enzyme-linked immunosorbent assay (ELISA) has been developed for detection of diethyl phthalate (DEP). Protein-hapten conjugate was synthesized to produce polyclonal antibodies against DEP. Experimental parameters were optimized, including immunoreaction conditions, the dilution ratio of horseradish peroxidase (HRP)-antigen conjugate, time of the antibody coated, effect of pH, and ionic strength. The limit of detection was 0.096 ng/ml, and the linear range was 0.1-3500 ng/ml with a regression coefficient (R2) of 0.9957. Recoveries were between 96.4 and 106.2%. The cross-reactivities of the anti-DEP antibody to six structurally related phthalate esters were less than 9%. The method was successfully applied to the determination of DEP in tap water, river water (Yangtze River), and leachate from plastic drinking bottles. This immunoassay was highly specific, sensitive, rapid, simple, and suitable for DEP monitoring. The results obtained were compared with those obtained using the high-performance liquid chromatography method. 相似文献
8.
Miriam Ahuactzin-Pérez Saúl Tlécuitl-Beristain Jorge García-Dávila Ericka Santacruz-Juárez Manuel González-Pérez María Concepción Gutiérrez-Ruíz Carmen Sánchez 《Fungal biology》2018,122(10):991-997
Dibutyl phthalate (DBP) is a plasticizer, whose presence in the environment as a pollutant has attained a great deal of attention due to its reported association with endocrine system disturbances on animals. Growth parameters, glucose uptake, percentage of removal efficiency (%E) of DBP, biodegradation constant of DBP (k) and half-life of DBP biodegradation (t1/2) were evaluated for Pleurotus ostreatus grown on media containing glucose and different concentrations of DBP (0, 500 and 1000 mg l?1). P. ostreatus degraded 99.6 % and 94 % of 500 and 1000 mg of DBP l?1 after 312 h and 504 h, respectively. The k was 0.0155 h?1 and 0.0043 h?1 for 500 and 1000 mg of DBP l?1, respectively. t1/2 was 44.7 h and 161 h for 500 and 1000 mg of DBP l?1, respectively. Intermediate compounds of biodegraded DBP were identified by GC-MS and a DBP biodegradation pathway was proposed using quantum chemical calculation. DBP might be metabolized to benzene and acetyl acetate, the first would be oxidated to muconic acid and the latter would enter into the Krebs cycle. P. ostreatus has the ability to degrade DBP and utilizes it as source of carbon and energy. 相似文献
9.
Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil 总被引:1,自引:0,他引:1
The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized (14)C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on (14)C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that beta-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil. 相似文献
10.
A specific polyclonal antibody targeting diethyl phthalate (DEP) with the higher antibody titer at 1:120,000 has been obtained, and an ultrasensitive and high-throughput direct competitive gold nanoparticles improved real-time immuno-PCR (GNP–rt–IPCR) technique has been developed for detecting DEP in foodstuff samples. Under optimal conditions, a rather low linearity is achieved within a range of 4 pg L−1 to 40 ng L−1, and the limit of detection (LOD) is 1.06 pg L−1. Otherwise, the GNP–rt–IPCR technique is highly selective, with low cross-reactivity values for DEP analogs (<5%). Finally, the concentrations of DEP in foodstuff samples by the GNP–rt–IPCR method range from 0.48 to 41.88 μg kg−1. Satisfactory recoveries (88.39–112.79%) and coefficient of variation values (8.38–12.77%) are obtained. The consistency between the results obtained from GNP–rt–IPCR and gas chromatography–mass spectrometry (GC–MS) is 98.3%, which further proves that GNP–rt–IPCR is an accurate, reliable, rapid, ultrasensitive, and high-throughput method for batch determination of trace amounts of DEP in foodstuff samples. 相似文献
11.
The toxicity and effects on protein synthesis of the phthalate esters diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) was studied in radish seedlings (Raphanus sativus cv. Kööpenhaminan tori). Phthalate esters are a class of commercially important compounds used mainly as plasticizers in high molecular-weight polymers such as many plastics. They can enter soil through various routes and can affect plant growth and development. First the effect of DEP and DEHP on the growth of radish seedlings was determined in an aqueous medium. It was found that DEP, but not DEHP, caused retardation of growth in radish. A further investigation on protein synthesis during DEP-stress was executed by in vivo protein labeling combined with two-dimensional gel electrophoresis (2D-PAGE). For comparisons with known stress-induced proteins a similar experiment was done with heat shock, and the induced heat shock proteins (HSPs) were compared with those of DEP-stress. The results showed that certain HSPs can be used as an indicator of DEP-stress, although the synthesis of most HSPs was not affected by DEP. DEP also elicited the synthesis of numerous proteins found only in DEP-treated roots. The toxic effect of phthalate esters and the roles of the induced proteins are discussed. 相似文献
12.
M. Ahuactzin-Pérez J. L. Torres B. R. Rodríguez-Pastrana J. Soriano-Santos G. Díaz-Godínez R. Díaz S. Tlecuitl-Beristain C. Sánchez 《World journal of microbiology & biotechnology》2014,30(11):2811-2819
Phthalates are esters of phthalic acid that give flexibility to polyvinyl chloride. Diverse studies have reported that these compounds might be carcinogenic, mutagenic and/or teratogenic. Radial growth rate, biomass, hyphal thickness of Neurospora sitophyla, Trichoderma harzianum and Aspergillus niger, grown in two different concentrations of dibutyl phthalate (DBP) (500 and 1,000 mg/l) in agar and in submerged fermentation were studied. The inhibitory concentration (IC50) and the constant of biodegradation of dibutyl phthalate in Escherichia coli cultures were used to evaluate toxicity. The radial growth rate and thickness of the hypha were positively correlated with the concentration of phthalate. The pH of the cultures decreased as the fermentation proceeded. It is shown that these fungi are able to degrade DBP to non-toxic compounds and that these can be used as sole carbon and energy sources by this bacterium. It is demonstrated that the biodegradation of the DBP is directly correlated with the IC50. This is the first study that reports a method to determine the biodegradation of DBP on the basis of the IC50 and fungal growth, and the effect of this phthalate on the growth and thickness of hyphae of filamentous fungi in agar and in submerged fermentation. 相似文献
13.
Kejun Wu Camille Dumat Hanqing Li Hanping Xia Zhian Li 《International journal of phytoremediation》2019,21(7):683-692
AbstractA pot experiment was conducted to explore the plant-assisted degradation efficiency of di-(2-ethylhexyl) phthalate (DEHP) and pyrene. Three plant species: Ceylon spinach, sunflower, and leaf mustard were cultivated in co-contaminated soils under three contamination levels: control (T0), 20?mg kg?1 (T20), and 50?mg kg?1 (T50). The results showed that a higher DEHP and pyrene degradation efficiency was observed evidently in planted cases, increasing from 42 to 53–59% (T0), 61 to 65–76% (T20) and 52 to 68–78% (T50) for DEHP, and from 22 to 30–49% (T0), 58 to 62–72% (T20), and 54 to 57–70% (T50) for pyrene. Under T20 contamination level, soil phospholipid fatty-acid analysis depicted the increased microbial biomass in rhizosphere, especially the arbuscular mycorrhizal fungus that is effective for the degradation of organic pollutants. The study also revealed that the activities of dehydrogenase, acid phosphomonoesterase, urease, and phenol oxidase negatively correlated with pollutant concentration. In general, the removal rate of DEHP and pyrene was highest in the soil planted with leaf mustard for each contamination level considered. For soils at T20 level, sunflower and leaf mustard appeared as interesting phytoremediation plants due to the improved removal rates of organic pollutants and the soil microbial activity. 相似文献
14.
J. Biegańska 《Biology Bulletin》2007,34(1):76-85
This study addresses the efficiency of microbial preparations to degrade pesticide residues in soil. A method to degrade pesticides DNOC and pendimethalin using Pseudomonas and Arthrobacter bacteria with a fertilizer is described. 相似文献
15.
Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. 相似文献
16.
M. V. Walter E. C. Nelson G. Firmstone D. G. Martin M. J. Clayton S. Simpson 《Soil & Sediment Contamination》1997,6(1):61-77
The purpose of the present study was to provide new methods that would increase the rates of biodegradation of petroleum hydrocarbons in soil, thus reducing the time required to achieve a satisfactory level of residual hydrocarbon in an ex situ bioremediation. Results of laboratory studies on several techniques were used to guide our implementation of these methods in controlled field studies. Soils contaminated with nonvolatile hydrocarbons were treated with various combinations of (1) an anionic surfactant guanidinium cocoate (CGS), (2) a consortium of hydrocarbon‐degrading microorganisms, (3) a slow‐release form of nitrogen:urea, and (4) the bulking agent vermiculite. Laboratory results describing the activity of CGS have been presented previously (Jain et al., 1992). The amount and rate of hydrocarbon loss in treated soil was compared with hydrocarbon lost in soil that received no amendment other than water (water only). We also used a sheen screen method (Nelson et al., 1995), to assess the effectiveness of our field application of microorganisms. 相似文献
17.
《International Biodeterioration》1988,24(4-5):299-306
Several environments have been examined to determine the number and type of microorganisms which are capable of degrading morpholine (a simple heterocyclic compound with a reputation for recalcitrance to biodegradation). The methods developed to isolate and enumerate morpholine degraders are discussed. The properties, including growth rates, of isolated morphine degraders are reported. 相似文献
18.
Biodegradation is important for natural and industrial cycling of environmental chemicals. Industries and government regulators increasingly seek to know the fate of chemicals in the environment and thus prevent potential negative impacts on human or ecosystem health. However, millions of organic compounds are known, and most will remain unstudied with respect to biodegradation. This necessitates the development of organized biodegradation information coupled with predictive methods. Biodegradation prediction methods are being developed using the information contained in the University of Minnesota Biocatalysis/Biodegradation database. Heuristic rules are derived from compiled biodegradation information. Additional rules are generated by deconstructing compounds into a set of the 40 most common organic functional groups. The rules consist of deriving biochemically plausible catabolic reactions for each of the functional groups. More complex compounds, containing multiple functional groups, are analysed using higher order rules requiring prioritizing enzymatic attack and reactions cleaving functional groups. While biodegradation prediction, like weather prediction, will never be perfect, it can be an important tool for guiding industry, regulators and experimentalists. 相似文献
19.
20.
Lawrence P. Wackett 《Environmental microbiology》2015,17(5):1836-1837