首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to predict structure from sequence is particularly important for toxins, virulence factors, allergens, cytokines, and other proteins of public health importance. Many such functions are represented in the parallel beta-helix and beta-trefoil families. A method using pairwise beta-strand interaction probabilities coupled with evolutionary information represented by sequence profiles is developed to tackle these problems for the beta-helix and beta-trefoil folds. The algorithm BetaWrapPro employs a "wrapping" component that may capture folding processes with an initiation stage followed by processive interaction of the sequence with the already-formed motifs. BetaWrapPro outperforms all previous motif recognition programs for these folds, recognizing the beta-helix with 100% sensitivity and 99.7% specificity and the beta-trefoil with 100% sensitivity and 92.5% specificity, in crossvalidation on a database of all nonredundant known positive and negative examples of these fold classes in the PDB. It additionally aligns 88% of residues for the beta-helices and 86% for the beta-trefoils accurately (within four residues of the exact position) to the structural template, which is then used with the side-chain packing program SCWRL to produce 3D structure predictions. One striking result has been the prediction of an unexpected parallel beta-helix structure for a pollen allergen, and its recent confirmation through solution of its structure. A Web server running BetaWrapPro is available and outputs putative PDB-style coordinates for sequences predicted to form the target folds.  相似文献   

2.
MOTIVATION: As protein structure database expands, protein loop modeling remains an important and yet challenging problem. Knowledge-based protein loop prediction methods have met with two challenges in methodology development: (1) loop boundaries in protein structures are frequently problematic in constructing length-dependent loop databases for protein loop predictions; (2) knowledge-based modeling of loops of unknown structure requires both aligning a query loop sequence to loop templates and ranking the loop sequence-template matches. RESULTS: We developed a knowledge-based loop prediction method that circumvents the need of constructing hierarchically clustered length-dependent loop libraries. The method first predicts local structural fragments of a query loop sequence and then structurally aligns the predicted structural fragments to a set of non-redundant loop structural templates regardless of the loop length. The sequence-template alignments are then quantitatively evaluated with an artificial neural network model trained on a set of predictions with known outcomes. Prediction accuracy benchmarks indicated that the novel procedure provided an alternative approach overcoming the challenges of knowledge-based loop prediction. AVAILABILITY: http://cmb.genomics.sinica.edu.tw  相似文献   

3.
To study forms in plants and other living organisms, several mathematical tools are available, most of which are general tools that do not take into account valuable biological information. In this report I present a new geometrical approach for modeling and understanding various abstract, natural, and man-made shapes. Starting from the concept of the circle, I show that a large variety of shapes can be described by a single and simple geometrical equation, the Superformula. Modification of the parameters permits the generation of various natural polygons. For example, applying the equation to logarithmic or trigonometric functions modifies the metrics of these functions and all associated graphs. As a unifying framework, all these shapes are proven to be circles in their internal metrics, and the Superformula provides the precise mathematical relation between Euclidean measurements and the internal non-Euclidean metrics of shapes. Looking beyond Euclidean circles and Pythagorean measures reveals a novel and powerful way to study natural forms and phenomena.  相似文献   

4.
5.
Two new sets of scoring matrices are introduced: H2 for the protein sequence comparison and T2 for the protein sequence-structure correlation. Each element of H2 or T2 measures the frequency with which a pair of amino acid types in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types (for H2) or in given structural states (for T2), in other structurally homologous proteins. There are four types, corresponding to the k-values of 1 to 4, for both H2 and T2. These matrices were set up using a large number of structurally homologous protein pairs, with little sequence homology between the pair, that were recently generated using the structure comparison program SHEBA. The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-Waterman (SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 and H2 matrices; and PASSC, which used Blosum62, H2, and T2 matrices. All procedures gave similar results when the probe and target sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave the next best results.  相似文献   

6.
A statistical analysis of known structures is made for an assessment of the utility of short-range energy considerations. For each type of amino acid, the potentials governing (1) the torsions and bond angle changes of virtual Cα-Cα bonds and (2) the coupling between torsion and bond angle changes are derived. These contribute approximately −2 RT per residue to the stability of native proteins, approximately half of which is due to coupling effects. The torsional potentials for the α-helical states of different residues are verified to be strongly correlated with the free-energy change measurements made upon single-site mutations at solvent-exposed regions. Likewise, a satisfactory correlation is shown between the β-sheet potentials of different amino acids and the scales from free-energy measurements, despite the role of tertiary context in stabilizing β-sheets. Furthermore, there is excellent agreement between our residue-specific potentials for α-helical state and other thermodynamic based scales. Threading experiments performed by using an inverse folding protocol show that 50 of 62 test structures correctly recognize their native sequence on the basis of short-range potentials. The performance is improved to 55, upon simultaneous consideration of short-range potentials and the nonbonded interaction potentials between sequentially distant residues. Interactions between near residues along the primary structure, i.e., the local or short-range interactions, are known to be insufficient, alone, for understanding the tertiary structural preferences of proteins alone. Yet, knowledge of short-range conformational potentials permits rationalizing the secondary structure propensities and aids in the discrimination between correct and incorrect tertiary folds. Proteins 29:292–308, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
FUGUE, a program for recognizing distant homologues by sequence-structure comparison (http://www-cryst.bioc.cam.ac.uk/fugue/), has three key features. (1) Improved environment-specific substitution tables. Substitutions of an amino acid in a protein structure are constrained by its local structural environment, which can be defined in terms of secondary structure, solvent accessibility, and hydrogen bonding status. The environment-specific substitution tables have been derived from structural alignments in the HOMSTRAD database (http://www-cryst.bioc. cam.ac.uk/homstrad/). (2) Automatic selection of alignment algorithm with detailed structure-dependent gap penalties. FUGUE uses the global-local algorithm to align a sequence-structure pair when they greatly differ in length and uses the global algorithm in other cases. The gap penalty at each position of the structure is determined according to its solvent accessibility, its position relative to the secondary structure elements (SSEs) and the conservation of the SSEs. (3) Combined information from both multiple sequences and multiple structures. FUGUE is designed to align multiple sequences against multiple structures to enrich the conservation/variation information. We demonstrate that the combination of these three key features implemented in FUGUE improves both homology recognition performance and alignment accuracy.  相似文献   

8.
Statistical potentials based on pairwise interactions between C alpha atoms are commonly used in protein threading/fold-recognition attempts. Inclusion of higher order interaction is a possible means of improving the specificity of these potentials. Delaunay tessellation of the C alpha-atom representation of protein structure has been suggested as a means of defining multi-body interactions. A large number of parameters are required to define all four-body interactions of 20 amino acid types (20(4) = 160,000). Assuming that residue order within a four-body contact is irrelevant reduces this to a manageable 8,855 parameters, using a nonredundant dataset of 608 protein structures. Three lines of evidence support the significance and utility of the four-body potential for sequence-structure matching. First, compared to the four-body model, all lower-order interaction models (three-body, two-body, one-body) are found statistically inadequate to explain the frequency distribution of residue contacts. Second, coherent patterns of interaction are seen in a graphic presentation of the four-body potential. Many patterns have plausible biophysical explanations and are consistent across sets of residues sharing certain properties (e.g., size, hydrophobicity, or charge). Third, the utility of the multi-body potential is tested on a test set of 12 same-length pairs of proteins of known structure for two protocols: Sequence-recognizes-structure, where a query sequence is threaded (without gap) through the native and a non-native structure; and structure-recognizes-sequence, where a query structure is threaded by its native and another non-native sequence. Using cross-validated training, protein sequences correctly recognized their native structure in all 24 cases. Conversely, structures recognized the native sequence in 23 of 24 cases. Further, the score differences between correct and decoy structures increased significantly using the three- or four-body potential compared to potentials of lower order.  相似文献   

9.
Li M  Huang Y  Xiao Y 《Proteins》2008,72(4):1161-1170
Proteins with symmetric structures are ideal models to investigate the sequence-structure relations. We investigate proteins with beta-trefoil fold and find they have different degrees of sequence symmetries although they show similar symmetric structures. To understand this, we calculate the strength of interactions of the beta-trefoil folds with surrounding environments and find the low degrees of sequence symmetries are often correlated with large external interactions. Our results give an additional confirmation of Anfinsen's thermodynamic hypothesis that protein structures are not only determined by their sequences but also by their surrounding environments. We suggest the external interactions should be considered additionally in protein structure prediction through ab initio folding.  相似文献   

10.
A holistic approach to protein structure alignment   总被引:4,自引:0,他引:4  
A method of protein structure comparison developed previously is extended to incorporate other aspects of protein structure in addition to the inter-atomic vectors on which it was originally based. Each additional aspect, which induced hydrogen bonding, solvent exposure, torsional angles and sequence, was introduced separately and evaluated for its ability to improve alignment quality. The components were then combined, suitably weighted, to produce a more holistic comparison method. The method was tested on a group of remotely related beta/alpha type proteins that share a common feature in their overall chain fold. The results indicated that while the original inter-atomic vector component was sufficient to give the correct alignment of most pairs of topologically equivalent proteins, the inclusion of hydrogen bonds, torsion angles and a measure of solvent exposure led to improvements in the more difficult comparisons. Consideration of amino acid properties, including hydrophobicity, had no beneficial effect. The failure of the latter component was not unexpected considering the almost total lack of sequence similarity among the proteins considered.  相似文献   

11.
MOTIVATION: This work aims to develop computational methods to annotate protein structures in an automated fashion. We employ a support vector machine (SVM) classifier to map from a given class of structures to their corresponding structural (SCOP) or functional (Gene Ontology) annotation. In particular, we build upon recent work describing various kernels for protein structures, where a kernel is a similarity function that the classifier uses to compare pairs of structures. RESULTS: We describe a kernel that is derived in a straightforward fashion from an existing structural alignment program, MAMMOTH. We find in our benchmark experiments that this kernel significantly out-performs a variety of other kernels, including several previously described kernels. Furthermore, in both benchmarks, classifying structures using MAMMOTH alone does not work as well as using an SVM with the MAMMOTH kernel. AVAILABILITY: http://noble.gs.washington.edu/proj/3dkernel  相似文献   

12.
A new intrinsic geometry based on a spectral analysis is used to motivate methods for aligning protein folds. The geometry is induced by the fact that a distance matrix can be scaled so that its eigenvalues are positive. We provide a mathematically rigorous development of the intrinsic geometry underlying our spectral approach and use it to motivate two alignment algorithms. The first uses eigenvalues alone and dynamic programming to quickly compute a fold alignment. Family identification results are reported for the Skolnick40 and Proteus300 data sets. The second algorithm extends our spectral method by iterating between our intrinsic geometry and the 3D geometry of a fold to make high-quality alignments. Results and comparisons are reported for several difficult fold alignments. The second algorithm's ability to correctly identify fold families in the Skolnick40 and Proteus300 data sets is also established.  相似文献   

13.
A rapid method of protein structure alignment   总被引:5,自引:0,他引:5  
A reduction in the time required to compare two protein structures has been achieved for a previously developed structure alignment method, by reducing the number of residue pair comparisons which must be performed between the two structures. Subsets of residue pairs are selected by an iterative procedure. Initially, selection is based on similarities in solvent accessible surface areas or torsional angles or a combination of both properties, giving subsets containing approximately 2% of the total number of residue pairs. Using these subsets, a rough comparison of the two structures is generated by the structural alignment program. The information returned from this can be used to identify more accurately topologically equivalent residues in the two proteins, thus enabling a new and much smaller subset (less than 0.2% of the total number of residue pairs) to be selected. The process of iterative refinement of the residue pair subsets is repeated once more, when in 95% of the structure comparisons tested, the correct alignment of the proteins was obtained. Times required to compare the structures using the refined subsets are insignificant compared to the initial comparison, so that considerable increases in speed are possible. The method was tested on two groups of proteins, a set of remotely related alpha/beta nucleotide proteins and the variable and constant domains of the immunoglobulins. Increases in speed ranging from 50-fold to greater than 150-fold were obtained depending on the degree of similarity of the two structures. In some comparisons the alignment was improved due to the reduction in noise obtained by comparing mainly equivalent residues.  相似文献   

14.
A multiple alignment program for protein sequences   总被引:1,自引:0,他引:1  
A program for the multiple alignment of protein sequences ispresented. The program is an extension of the fast alignmentprogram by Wilbur et al. (1984) into higher dimensions. Theuse of hash procedures on fragments of the protein sequencesincreases the speed of calculation. Thereby we also take intoaccount fragments which are present in some, but not in all,sequences considered. The results of some multiple alignmentsare given. Received on September 11, 1986; accepted on March 18, 1987  相似文献   

15.
MOTIVATION: Local structure segments (LSSs) are small structural units shared by unrelated proteins. They are extensively used in protein structure comparison, and predicted LSSs (PLSSs) are used very successfully in ab initio folding simulations. However, predicted or real LSSs are rarely exploited by protein sequence comparison programs that are based on position-by-position alignments. RESULTS: We developed a SEgment Alignment algorithm (SEA) to compare proteins described as a collection of predicted local structure segments (PLSSs), which is equivalent to an unweighted graph (network). Any specific structure, real or predicted corresponds to a specific path in this network. SEA then uses a network matching approach to find two most similar paths in networks representing two proteins. SEA explores the uncertainty and diversity of predicted local structure information to search for a globally optimal solution. It simultaneously solves two related problems: the alignment of two proteins and the local structure prediction for each of them. On a benchmark of protein pairs with low sequence similarity, we show that application of the SEA algorithm improves alignment quality as compared to FFAS profile-profile alignment, and in some cases SEA alignments can match the structural alignments, a feat previously impossible for any sequence based alignment methods.  相似文献   

16.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

17.
A structure-based method for protein sequence alignment   总被引:1,自引:0,他引:1  
MOTIVATION: With the continuing rapid growth of protein sequence data, protein sequence comparison methods have become the most widely used tools of bioinformatics. Among these methods are those that use position-specific scoring matrices (PSSMs) to describe protein families. PSSMs can capture information about conserved patterns within families, which can be used to increase the sensitivity of searches for related sequences. Certain types of structural information, however, are not generally captured by PSSM search methods. Here we introduce a program, Structure-based ALignment TOol (SALTO), that aligns protein query sequences to PSSMs using rules for placing and scoring gaps that are consistent with the conserved regions of domain alignments from NCBI's Conserved Domain Database. RESULTS: In most cases, the alignment scores obtained using the local alignment version follow an extreme value distribution. SALTO's performance in finding related sequences and producing accurate alignments is similar to or better than that of IMPALA; one advantage of SALTO is that it imposes an explicit gapping model on each protein family. AVAILABILITY: A stand-alone version of the program that can generate global or local alignments is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/SALTO/), and has been incorporated to Cn3D structure/alignment viewer. CONTACT: bryant@ncbi.nlm.nih.gov.  相似文献   

18.
Liu S  Zhang C  Zhou H  Zhou Y 《Proteins》2004,56(1):93-101
Extracting knowledge-based statistical potential from known structures of proteins is proved to be a simple, effective method to obtain an approximate free-energy function. However, the different compositions of amino acid residues at the core, the surface, and the binding interface of proteins prohibited the establishment of a unified statistical potential for folding and binding despite the fact that the physical basis of the interaction (water-mediated interaction between amino acids) is the same. Recently, a physical state of ideal gas, rather than a statistically averaged state, has been used as the reference state for extracting the net interaction energy between amino acid residues of monomeric proteins. Here, we find that this monomer-based potential is more accurate than an existing all-atom knowledge-based potential trained with interfacial structures of dimers in distinguishing native complex structures from docking decoys (100% success rate vs. 52% in 21 dimer/trimer decoy sets). It is also more accurate than a recently developed semiphysical empirical free-energy functional enhanced by an orientation-dependent hydrogen-bonding potential in distinguishing native state from Rosetta docking decoys (94% success rate vs. 74% in 31 antibody-antigen and other complexes based on Z score). In addition, the monomer potential achieved a 93% success rate in distinguishing true dimeric interfaces from artificial crystal interfaces. More importantly, without additional parameters, the potential provides an accurate prediction of binding free energy of protein-peptide and protein-protein complexes (a correlation coefficient of 0.87 and a root-mean-square deviation of 1.76 kcal/mol with 69 experimental data points). This work marks a significant step toward a unified knowledge-based potential that quantitatively captures the common physical principle underlying folding and binding. A Web server for academic users, established for the prediction of binding free energy and the energy evaluation of the protein-protein complexes, may be found at http://theory.med.buffalo.edu.  相似文献   

19.
A parameterized algorithm for protein structure alignment.   总被引:2,自引:0,他引:2  
This paper proposes a parameterized polynomial time approximation scheme (PTAS) for aligning two protein structures, in the case where one protein structure is represented by a contact map graph and the other by a contact map graph or a distance matrix. If the sequential order of alignment is not required, the time complexity is polynomial in the protein size and exponential with respect to two parameters D(u)/D(l) and D(c)/D(l), which usually can be treated as constants. In particular, D(u) is the distance threshold determining if two residues are in contact or not, D(c) is the maximally allowed distance between two matched residues after two proteins are superimposed, and D(l) is the minimum inter-residue distance in a typical protein. This result clearly demonstrates that the computational hardness of the contact map based protein structure alignment problem is related not to protein size but to several parameters modeling the problem. The result is achieved by decomposing the protein structure using tree decomposition and discretizing the rigid-body transformation space. Preliminary experimental results indicate that on a Linux PC, it takes from ten minutes to one hour to align two proteins with approximately 100 residues.  相似文献   

20.

Background  

A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号