首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four plant growth-promoting bacteria (PGPB) were used as study materials, among them two heavy metal-tolerant rhizosphere strains SrN1 (Arthrobacter sp.) and SrN9 (Bacillus altitudinis) were isolated from rhizosphere soil, while two endophytic strains SaN1 (Bacillus megaterium) and SaMR12 (Sphingomonas) were identified from roots of the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum alfredii Hance. A pot experiment was carried out to investigate the effects of these PGPB on plant growth and Cd accumulation of oilseed rape (Brassica napus) plants grown on aged Cd-spiked soil. The results showed that the four PGPB significantly boosted oilseed rape shoot biomass production, improved soil and plant analyzer development (SPAD) value, enhanced Cd uptake of plant and Cd translocation to the leaves. By fluorescent in situ hybridization (FISH) and green fluorescent protein (GFP), we demonstrated the studied S. alfredii endophytic bacterium SaMR12 were able to colonize successfully in the B. napus roots. However, all four PGPB could increase seed Cd accumulation. Due to its potential to enhance Cd uptake by the plant and to restrict Cd accumulation in the seeds, SaMR12 was selected as the most promising microbial partner of B. napus when setting up a plant–microbe fortified remediation system.  相似文献   

2.
We report the RFLP mapping of quantitative trait loci (QTLs) which regulate the total seed aliphaticglucosinolate content in Brassica napus L. A population of 99 F1-derived doubled-haploid (DH) recombinant lines from a cross between the cultivars Stellar (low-glucosinolate) and Major (high-glucosinolate) was used for singlemarker analysis and the interval mapping of QTLs associated with total seed glucosinolates. Two major loci, GSL-1 and GSL-2, with the largest influence on total seed aliphatic-glucosinolates, were mapped onto LG 20 and LG 1, respectively. Three loci with smaller effects, GSL-3, GSL-4 and GSL-5, were tentatively mapped to LG 18, LG 4 and LG 13, respectively. The QTLs acted in an additive manner and accounted for 71 % of the variation in total seed glucosinolates, with GSL-1 and GSL-2 accounting for 33% and 17%, respectively. The recombinant population had aliphatic-glucosinolate levels of between 6 and 160 moles per g-1 dry wt of seed. Transgressive segregation for high seed glucosinolate content was apparent in 25 individuals. These phenotypes possessed Stellar alleles at GSL-3 and Major alleles at the four other GSL loci demonstrating that low-glucosinolate genotypes (i.e. Stellar) may possess alleles for high glucosinolates which are only expressed in particular genetic backgrounds. Gsl-elong and Gsl-alk, loci which regulate the ratio of individual aliphatic glucosinolates, were also mapped. Gsl-elong-1 and Gsl-elong-2, which control elongation of the -amino-acid precursors, mapped to LG 18 and LG 20 and were coincident with GSL loci which regulate total seed aliphatic glucosinolates. A third tentative QTL, which regulates side-chain elongation, was tentatively mapped to LG 12. Gsl-alk, which regulates H3CS-removal and side-chain de-saturation, mapped to LG 20.  相似文献   

3.
The objective of this study was to evaluate pollen dispersal inBrassica napus (oilseed rape). The selectable marker, used to follow pollen movement, was a dominant transgene (bar) conferring resistance to the herbicide glufosinate-ammonium. Transgenic and non-transgenic plants of the cultivar Westar were planted in a 1.1 ha field trial, with the transgenic plants in a 9 m diameter circle at the centre, surrounded by non-transgenic plants to a distance of at least 47 m in all directions. A 1 m circle of non-transgenic plants was sown in the centre of the transgenic area to allow estimation of the level of pollen dispersal when plants were in close contact. Honeybee hives were placed at the trial site to optimize the opportunity for cross-pollination. During the flowering period, regular observations were made of the number of plants flowering and the number and type of insects present in 60 1 m2 areas. These areas were located uniformly around the plot at distances of 1, 3, 6, 12, 24, 36 and 47 m from the edge of the 9 m circle of transgenic plants. Seed samples were harvested from each of the 7 distances so that approximately 20% of the circumference of the plot was sampled at each distance. The centre non-transgenic circle was also sampled. Plants were grown from the seed samples and sprayed with glufosinate to estimate the frequency of pollen dispersal at each distance. In order to screen enough samples to detect low frequency cross-pollination events, seed samples were tested in the greenhouse and on a larger scale in the field. Results were confirmed by testing progeny for glufosinate resistance and by Southern blot analysis. The estimated percentage of pollen dispersal in the non-transgenic centre circle was 4.8%. The frequency was estimated to be 1.5% at a distance of 1 m and 0.4% at 3 m. The frequency decreased sharply to 0.02% at 12 m and was only 0.00033% at 47 m. No obvious directional effects were detected that could be ascribed to wind or insect activity.  相似文献   

4.
Summary The response of oilseed rape cultivars to infection with Agrobacterium tumefaciens and A. rhizogenes and the possibility of regenerating genetically transformed oilseed rape plants were examined. The frequency at which Agrobacterium induced galls or hairy-roots on in vitro cultured plants ranged from 10% to 70%, depending on the cultivar. From galls induced by the tumorigenic strain T37, known to be strongly shoot inducing on tobacco, roots developed frequently. Occasionally, shoots formed and some of these produced tumour cell specific nopaline. Attempts to grow the transformed shoots into plants have so far been unsuccessful. Whole plants transformed with Ri-T-DNA, however, were regenerated. These had crinkled leaves and abundant, frequently branching roots that showed reduced geotropism, similar to previously isolated Ri T-DNA transformed tobacco and potato plants. The transformed oilseed rape plants flowered, but failed to form seeds.  相似文献   

5.
Before novel transgenic plant genotypes are grown outside containment facilities and evaluated under field conditions, it is necessary to complete a risk assessment to consider the possible consequences of that release. An important aspect of risk assessment is to consider the likelihood and consequences of the transgene being transferred by cross-pollination to related species, including other crops, weeds and ruderal populations. The purpose of this report is to review the literature to assess the ease with whichBrassica napus can hybridize with related species. The evidence for hybridization is considered at three levels: a) by open pollination, b) by hand pollination and c) by the use ofin vitro ovule and embryo rescue techniques; and also examines the fertility and vigour of the F1, F2 and backcross generations. Four species are reported to hybridize withB. napus by open pollination:B. rapa andB. juncea using fully fertile parents; andB. adpressa andR. raphanistrum using a male-sterileB. napus parent. Seventeen species are reported to form hybrids (including the four species above) withB. napus when pollination is carried out manually. At least 12 of these species were unable to form F2 progeny, and eight were unable to produce progeny when the F1 was backcrossed to one of the parental species. Many factors will influence the success of hybridization under field conditions, including: distance between the parents, synchrony of flowering, method of pollen spread, specific parental genotypes used, direction of the cross and the environmental conditions. Even where there is a possibility of hybridization betweenB. napus and a related species growing in the vicinity of a release, poor vigour and high sterility in the hybrids will generally mean that hybrids and their progeny will not survive in either an agricultural or natural habitat.  相似文献   

6.
Oilseed rape (Brassica napus) lines transformedwith the coat protein (CP) gene of Turnip mosaic virus(TuMV) were used to determine the effectiveness of resistance to TuMV mediatedby CP RNA or coat protein. Lines with one, two, or more copies of transgeneswere produced. T2 and T3 lines containing the CP genewitha functional start codon synthesised coat protein and showed high, but variablelevels of resistance to TuMV (21–96% resistant plants per line). TheT1 and T2 progeny of all lines carrying the CP gene withamutated start codon so that RNA but not protein was expressed, were assusceptible to TuMV as controls. Thus, in these experiments we were able toinduce CP-mediated resistance, but not RNA-mediated resistance.  相似文献   

7.
8.
New control strategies for insect pests of arable agriculture are needed to reduce current dependence on synthetic insecticides, the use of which is unsustainable. We investigated the potential of a simple control strategy to protect spring‐sown oilseed rape, Brassica napus L. (Brassicaceae), from two major inflorescence pests: the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and the seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), through exploitation of their host plant preferences. The strategy comprised, for the main crop, Starlight [an oilseed rape cultivar with relatively low proportions of alkenyl glucosinolates in the leaves (thereby releasing lower levels of attractive isothiocyanates than conventional cultivars)] and turnip rape, Brassica rapa (L.) (Brassicaceae), as a trap crop. We tested the system in laboratory, polytunnel semifield arena, and field experiments. The odours of Starlight were less attractive in olfactometer tests to both pests than those from a conventional cultivar, Canyon, and the plants were less heavily colonized in both polytunnel and field experiments. Turnip rape showed good potential as a trap crop for oilseed rape pests, particularly the pollen beetle as its odour was more attractive to both pests than that of oilseed rape. Polytunnel and field experiments showed the importance of relative growth stage in the system. As turnip rape flowers earlier than oilseed rape, beetles would be maintained on turnip rape past the damage‐susceptible growth stage of oilseed rape. The development of a pest control regime based on this strategy is discussed.  相似文献   

9.
In most experimental hybridizations between oilseed rape (Brassica napus) and weedy B. campestris, either intra- or interspecific pollen has been applied to individual flowers. Under field conditions, however, stigmas will often receive a mixture of the two types of pollen, thereby allowing for competition between male gametophytes and/or seeds within pods. To test whether competition influences the success of hybridization, pollen from the two species was mixed in different proportions and applied to stigmas of both species. The resulting seeds were scored for paternity by isozyme and randomly amplified polymorphic DNA analysis. Using data on the proportion of fully developed seeds and the proportion of these seeds that were hybrids, a statistical model was constructed to estimate the fitness of conspecific and heterospecific pollen and the survival of conspecific and heterospecific zygotes to seeds. B. campestris pollen in B. napus styles had a significantly lower fitness than the conspecific pollen, whereas no difference between pollen types was found in B. campestris styles. Hybrid zygotes survived to significantly lower proportions than conspecific zygotes in both species, with the lowest survival of hybrid zygotes in B. napus pods. This is in contrast to the higher survival of hybrid seeds in B. napus than in B. campestris pods when pollinations are made with pure pollen. Altogether, the likelihood of a foreign pollen grain producing a seed was much lower on B. napus than on B. campestris. In addition, pods on B. napus developed to a lower extent the more heterospecific pollen was in the mix, whereas this had no effect on B. campestris.  相似文献   

10.
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.  相似文献   

11.
Oxylipins are products of oxygenase-catalyzed reactions of fatty acids. Oxylipins have been found or implied to participate in a variety of different functions in or between organisms. In this report we investigated the potential of various naturally occurring oxylipins found in plants for their effects as fungicides on a number of fungal pathogens interfering with Brassica cultivation. The fungi investigated were Alternaria brassicae, Leptosphaeria maculans, Sclerotinia sclerotiorum and Verticillium longisporum. An in vitro growth inhibition assay was used, where the relative growth rate of the fungi were determined in the presence of various concentrations of oxylipins. While no universal fungicidic effect was found for the 10 compounds investigated there were examples of oxylipins having inhibitory effects. In certain cases the inhibitory effects was overcome by time, however. Since several of the oxylipins tested were found to be stable in the absence of the fungus this effect could be explained by induction of the degrading capacity of the fungus or increased tolerance. Several of the oxylipins also inhibited germination of L. maculans spores but the relative potency differed compared to the effects on hyphae. The study suggests that selected oxylipins may be used for disease control on Brassica plants.  相似文献   

12.
Phenotypic plasticity is an organism's ability to alter its development and life history in response to environmental conditions. In plants, biotic and abiotic factors drive the distribution of resources between growth and reproductive traits. One such biotic factor is pollination. Studies show that wind and insect pollination enhance oilseed rape (Brassica napus) yield. However, the impact of pollination on resource allocation towards growth and reproduction is less understood. We conducted a controlled experiment to assess the effect of pollination on growth and functional reproductive traits. We compared two simulated supplementary pollen deposition methods (representing wind and insect pollination) alongside a non-supplementary control. Pollinated plants allocated resources towards growth and reproduction similarly, irrespective of deposition method. Plants receiving no supplementary pollination produced fewer seeds, allocating resources to growth, more prolific and persistent flowering, and heavier seeds. Pollinated plants had a reduced flowering period and were shorter, indicating resources were allocated to seed production rather than growth or the production of additional flowers. This allocation of resources from growth and flowering metrics can increase yield directly through increased seed production and indirectly through shorter plants and a reduced flowering period with seeds that mature earlier (agronomically beneficial traits).Wind and insect pollination can enhance and stabilise oilseed rape yield under various environmental conditions by acting in complementary ways. Since pollination limits yield in oilseed rape, it must be considered an input that can be actively managed. Successful management of pollination services requires growers to detect pollination deficits. Inadequately pollinated oilseed rape plants exhibit apparent morphological changes (e.g. taller plants that flower for longer), acting as an early warning to growers. Equipping growers with this knowledge provides them with a means of detecting deficits and thus enables them to take positive action to restore pollination services by introducing honeybees or enhancing wild pollinators.  相似文献   

13.
Abstract. Soil grown oilseed rape ( Brassica napus L. var. oleifera M., cv. Darmor) seedlings at the cotyledon stage (one week old), were inoculated in vivo at the base of the hypocotyl with Agrobacterium rhizogenes harbouring the pRi 15834 plasmid. Resulting adventitious root formation was observable about 2 or 3 weeks after infection. Differential Ri-induced root emergence and subsequent development occurred depending on water conditions and closeness of the wounding site to the soil surface: either thin, hairy roots growing rapidly and plagiotropically at the soil level under humid atmosphere, or hairless and fleshy, slowly growing aerial roots developed. The hairy roots were highly drought susceptible, whereas aerial roots revealed some potential for drought tolerance. Unlike normal roots, none of these Ri-induced roots appeared able to give rise to drought rhizogenesis in plants subjected to progressive drought stress. However, under hardening, achieved through successive and moderate drought stress-rehydration cycles, both types of Ri-induced roots improved drought tolerance and could express the morphogenetic differentiation programme leading to the formation of short, tuberized, drought-adapted, roots. These results, discussed in terms of hormonal imbalance and drought tolerance regulation, suggest that the Ri T-DNA gene expression, responsible for adventitious root induction and growth behaviour, is further regulated through the host plant.  相似文献   

14.
E. Wiberg  A. Banas  S. Stymne 《Planta》1997,203(3):341-348
The fatty acid composition and content of membrane and storage lipids of two transgenic laurate-producing rape (Brassica napus L.) lines were monitored during seed development. The two lines, the medium-laurate (ML) line and the high-laurate (HL) line, accumulated 34 mol% and 55 mol% of laurate in their seed triacylglycerols, respectively. The diacylglycerols contained about 17 and 33 mol% of laurate in the ML- and HL-lines, respectively, from the mid-stage of seed development up to seed maturity. The ML-line showed a maximal relative laurate content in phosphatidylcholine (17 mol%) at the mid-stage of seed development whereafter the content decreased to 2.7 mol% with seed maturity. The laurate content in phosphatidylcholine was observed to remain high (26 mol%) in the HL-line from the mid-stage to the end of triacylglycerol deposition. Thereafter, the relative content decreased and reached 6.6 mol% in the mature seeds. There was an enhanced activity of lauroyl-phosphatidylcholine- metabolizing enzymes in the seed membranes from laurate-producing lines compared with control lines, which might explain the decrease seen in laurate content in phosphatidylcholine during seed maturation. A comparison of the laurate distribution in the lipids from developing laurate-producing rape seeds and developing seeds from three species naturally accumulating laurate at similar levels revealed differences in laurate metabolism compared with these species. The results suggest that phospholipids and triacylglycerols are synthesized from the same diacylglycerol pool in rape seeds and that rape lysophosphatidic acid acyltransferase and diacylglycerol acyltransferase do not have the same preference for laurate substrates as the corresponding enzymes in seed tissues naturally accumulating this acyl group. In addition, the mechanisms that specifically remove or exclude laurate from membrane lipids appear less effective in rape seed than in tissues naturally evolved to synthesize laurate-rich oils. Received: 23 December 1996 / Accepted: 16 April 1997  相似文献   

15.
Low-Zn seed (around 80 ng Zn per seed) and high-Zn seed (around 160 ng Zn per seed) of Zhongyou 821 (a traditional Brassica napus genotype from China found to be Zn-inefficient in our previous experiments), Narendra (Zn-efficient B. napus genotype from Australia) and CSIRO-1 (a Zn-efficient B. juncea genotype from Australia) oilseed rape genotypes were sown in pots containing Zn-deficient siliceous sand fertilized with low Zn supply (0.05 mg Zn kg–1 soil) or high Zn supply (2.0 mg Zn kg–1 soil) in a controlled environment. After six weeks, plants derived from the high-Zn seed had better seedling vigour, increased root and shoot growth, more leaf area and chlorophyll concentration in fresh leaf, and higher Zn uptake in shoot compared to those from low-Zn seed at low Zn supply; the impact of high-Zn seed was more marked in Zhongyou 821 compared with CSIRO-1 and Narendra. The influence of high-Zn seed was dissipated at high Zn supply. CSIRO-1 was superior in terms of shoot dry matter production and Zn uptake in shoots at low Zn supply. The results demonstrate that although oilseed rape has very small seeds (about 3 mg per seed weight) compared with wheat (30 mg per seed weight), Zn reserves present in this very small seed still have a strong impact on early vegetative growth as well as on Zn uptake of plants in Zn-deficient soils. The results suggest that sowing high-Zn seed coupled with growing Zn-efficient genotypes may help in sustaining the production of oilseed rape in Zn-deficient soils, and this has implications for improved seed technology.  相似文献   

16.
Spring oilseed rapeBrassica napus L. ssp.oleifera cv. HM-81 was transformed with TL-DNA of the Ri plasmid of the agropine strainAgrobacterium rhizogenes 15834. Selfed progenies (R2 and R3 generations) were studied for changes in values of growth characteristics and fatty acids contents. Transformants are ‘homozygous’ for TL-DNA. Both generations of transformants differed significantly from the nontransformed control plants in reduced length, lower number of pods per plant, lower total mass of seeds and the higher number of branches. The contents of palmitic, linoleic and linolenic acids were significantly higher in transformants when compared with the control. On the contrary, the contents of both stearic and oleic acids were in most of transformants significantly lower. Only traces of erucic acid (less than 0.05 % ) were found, both in transformed and nontransformed plants.  相似文献   

17.
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content. Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted selection for an important trait in oilseed rape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Understanding patterns of pollen movement at the landscape scale is important for establishing management rules following the release of genetically modified (GM) crops. We use here a mating model adapted to cultivated species to estimate dispersal kernels from the genotypes of the progenies of male-sterile plants positioned at different sampling sites within a 10 x 10-km oilseed rape production area. Half of the pollen clouds sampled by the male-sterile plants originated from uncharacterized pollen sources that could consist of both large volunteer and feral populations, and fields within and outside the study area. The geometric dispersal kernel was the most appropriate to predict pollen movement in the study area. It predicted a much larger proportion of long-distance pollination than previously fitted dispersal kernels. This best-fitting mating model underestimated the level of differentiation among pollen clouds but could predict its spatial structure. The estimation method was validated on simulated genotypic data, and proved to provide good estimates of both the shape of the dispersal kernel and the rate and composition of pollen issued from uncharacterized pollen sources. The best dispersal kernel fitted here, the geometric kernel, should now be integrated into models that aim at predicting gene flow at the landscape level, in particular between GM and non-GM crops.  相似文献   

19.
Seed lipids of oilseed rape (Brassica napus) usually contain small proportions (<3%) of stearic acid. The objective of this study was to increase the content of stearic fatty␣acid in rapeseed oil. An antisense down-regulation of the endogenous stearoyl-ACP desaturase (SAD) catalysing the reaction step from stearic to oleic acid in two different genetic backgrounds was studied. The result of down-regulation of the SAD yielded an about 10-fold increase of stearic acid from 3.7% up to 32% in single seeds of transgenic low-erucic acid rapeseed (LEAR), while high-erucic acid rapeseed (HEAR) showed a 4-fold increase of C18:0 from 1% up to 4%. It could be shown in pooled T2 seed material of LEAR rapeseed, that the stearic acid content is highly correlated with the down-regulation of SAD as indicated by the␣stearate desaturation proportion (SDP). The importance of the promoter strength for the alteration of a trait was confirmed in this study as no change in the fatty acid composition of transgenic plants was achieved with gene constructs controlled by the weak FatB4 seed-specific promoter from Cuphea lanceolata.Karim Zarhloul and Christof Stoll have contributed in equal parts to the present work  相似文献   

20.
The tolerance of oilseed rape (Brassica napus cv. Jet Neuf) to the herbicides dalapon and TCA was studied in two series of 10 experiments over four years. TCA (7.6–30.4 kg a.i./ha) was applied pre-emergence and dalapon (2.9–11.6 kg a.i./ha) was sprayed post-emergence between September and November at two growth stages (2–5, 4–7 leaves). Dalapon at all doses caused the leaves to appear yellow-green in colour and at the higher rates (5.8–11.6 kg a.i./ha), especially when applied at the later of the two growth stages, scorched the leaf margins and stunted the plants. TCA also caused the leaves to appear yellow-green and was noted to affect the retention of water by the leaf surfaces. In general the visible effects of treatment with dalapon were more severe than those of TCA. The effects of these two herbicides on rape seed yields were variable, with some trials showing statistically significant reductions and others none. However by combining the results of trials with similar treatments some underlying trends were identified. In the overall analyses dalapon at 11.6 kg a.i./ha, applied at both growth stages and at 5.8 kg a.i./ha, applied at the later one, reduced yields significantly. TCA at 15.2, 22.8 and 30.4 kg a.i./ha also caused significant yield reductions in the combined analyses. Further statistical analysis questioned the safety of the lower rates of both herbicides, which were similar to those recommended by the manufacturers. The severity of the foliar damage caused by dalapon was well correlated with the risk of significant yield reductions but not with the actual percentage loss of yield. No such correlations were possible with TCA as the visual symptoms were similar on all sites and were unaffected by dose. Recent changes in agricultural practices and in crop cultivar do not appear to have altered the sensitivity of rape to dalapon and TCA appreciably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号