首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of chromosomally derived micF RNA as a repressor of outer membrane protein OmpF of Escherichia coli was examined for various growth conditions. Levels of micF RNA as determined by Northern analyses are found to increase in response to cell growth at high temperature, in high osmolarity or in the presence of ethanol. After a switch to higher growth temperature, the levels of ompF mRNA and of newly synthesized OmpF decrease with time in E. coli strain, MC4100 but these decreases are not observed in isogenic micF deletion strain, SM3001. In addition, while levels of ompF mRNA are substantially reduced in both strains in response to high osmolarity or ethanol at 24 degrees C, the reduced levels in the parental strain are still 4-5-fold lower compared with the micF deletion strain. These findings indicate that chromosomally derived micF RNA plays a major role in the thermal regulation of OmpF and represses OmpF synthesis in response to several environmental signals by decreasing the levels of ompF mRNA. Analyses of the effect of a multicopy micF plasmid on the levels of OmpF and ompF mRNA after an increase in temperature indicated that multicopies of micF RNA markedly inhibited OmpF synthesis but did not accentuate ompF mRNA decrease. These data suggest that multicopy micF inhibits OmpF synthesis primarily through translational inactivation of ompF mRNA and that a limiting factor in addition to micF RNA is necessary to destabilize ompF mRNA.  相似文献   

3.
4.
5.
6.
Previously, the transfer of the phosphoryl group between the EnvZ and OmpR proteins, which are involved in activation of the ompF and ompC genes in response to the medium osmolarity, has been demonstrated in vitro. In this study, we characterized mutant EnvZ and OmpR proteins in terms of their in vitro phosphorylation and dephosphorylation. The proteins isolated from the mutants, envZ11 and ompR3, were found to be defective in seemingly the same aspect, i.e. OmpR dephosphorylation. The protein isolated from the ompR77 mutant, which is a suppressor mutant specific for envZ11, was found to be defective in another aspect, i.e. OmpR phosphorylation. These results imply that the phosphotransfer reactions observed in vitro play roles in the mechanism underlying the osmoregulatory expression of the ompF and ompC genes in vivo. We provide evidence that the EnvZ protein is involved not only in OmpR phosphorylation but also in OmpR dephosphorylation.  相似文献   

7.
The ompR and envZ genes, which together constitute the ompB operon, are involved in osmoregulatory expression of the OmpF and OmpC proteins, major outer membrane proteins of Escherichia coli. The envZ11 mutation results in the OmpF- OmpC-constitutive phenotype. A mutant which suppressed defects caused by the envZ11 mutation was isolated. The suppressor mutation also suppressed the LamB- PhoA- phenotype caused by the envZ11 mutation. The mutation occurred in the ompR gene and hence was termed ompR77. The ompR77 mutation alone produced no obvious phenotype. Functioning of the ompR77 allele remained envZ gene dependent. Although the ompR77 mutation suppressed the envZ11 mutation, it did not suppress a mutation that occurred in another position within the envZ gene (envZ160). These results indicate that OmpR and EnvZ, two regulatory proteins, functionally interact with each other.  相似文献   

8.
9.
10.
The ompB operon of Escherichia coli contains the structural genes for two proteins, OmpR and EnvZ, which control the osmoregulated biosynthesis of the porin proteins OmpF and OmpC. By inserting XbaI octamer linkers into the cloned ompB locus, four distinct frameshift mutants were isolated and subsequently characterized for their OmpR and EnvZ protein products and their outer membrane porin phenotype. In a minicell expression system, the wild-type products of the ompR and envZ genes were found to be approximately 28 and 50 kilodaltons in size, respectively, whereas the mutant proteins were either truncated or extended due to the frame shift. The identity of the envZ gene product was confirmed by immunoprecipitation. M13 dideoxy sequencing of the DNA around the wild-type ompR-envZ junction revealed an error in the sequence published for this operon; the complete corrected sequence is presented. A sequence, ATGA, was found that forms the termination codon for the OmpR reading frame and a possible initiation codon for the EnvZ protein; these sequences are consistent with the sizes of the proteins observed after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translational activity of this ATG codon was confirmed by fusing the lacZ gene in frame with the putative EnvZ coding sequence. The implications of these results are discussed with respect to the regulation of synthesis of the ompB gene products.  相似文献   

11.
12.
In Shigella flexneri, the ompB locus (containing the ompR and envZ genes) was found to modulate expression of the vir genes, which are responsible for invasion of epithelial cells. vir gene expression was markedly enhanced under conditions of high osmolarity (300 mosM), similar to that encountered in tissues both extra- and intracellularly. Two ompB mutants were constructed and tested for virulence and for osmotic regulation of vir genes. An envZ::Tn10 mutant remained invasive, although its virulence was significantly decreased as a result of its inability to survive intracellularly. By using a vir::lac operon fusion, this mutation was shown to decrease beta-galactosidase expression both in low- and high-osmolarity conditions but did not affect vir expression in response to changes in osmolarity. A delta ompB deletion mutant was also constructed via allelic exchange with an in vitro-mutagenized ompB locus of Escherichia coli. This mutation severely impaired virulence and abolished expression of the vir::lac fusion in both low- and high-osmolarity conditions. Therefore, a two-component regulatory system modulates virulence according to environmental conditions. In addition, the mutation affecting a spontaneous avirulent variant of S. flexneri serotype 5, M90T, has been mapped at the ompB locus and was complemented by the cloned E. coli ompB locus. Introduction of the vir::lac fusion into this mutant did not result in the expression of beta-galactosidase (Lac-).  相似文献   

13.
14.
Regulation of ompF porin expression by salicylate in Escherichia coli.   总被引:11,自引:0,他引:11       下载免费PDF全文
J L Rosner  T J Chai    J Foulds 《Journal of bacteriology》1991,173(18):5631-5638
  相似文献   

15.
The ompB operon of Vibrio cholerae 569B has been cloned and fully sequenced. The operon encodes two proteins, OmpR and EnvZ, which share sequence identity with the OmpR and EnvZ proteins of a variety of other bacteria. Although the order of the ompR and envZ genes of V. cholerae is similar to that of the ompB operon of E. coli, S. typhimurium and X. nematophilus, the Vibrio operon exhibits a number of novel features. The structural organisation and features of the V. cholerae ompB operon are described.  相似文献   

16.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.  相似文献   

17.
18.
Various environmental signals control the expression of the virulence factors in pathogenic Yersinia enterocolitica strains. The role of the osmotic regulator OmpR protein in controlling the production of Yop proteins, virulence determinants in Y. enterocolitica O:9 (European type) has been studied. An ompR deletion mutant was constructed via allelic exchange with an ompR gene of Y. enterocolitica mutagenized in vitro by a reverse genetic polymerase chain reaction (PCR)-based strategy. The ompR mutant showed a reduced ability to survive under conditions of various environmental stresses in vitro. In particular, low pH stress resulted in increased cell mortality levels. Under conditions of high osmolarity, the wild strain's Yop protein production was reduced, whereas protein levels from the mutant strain remained constant regardless of osmolarity variance. In J774A.1 macrophage cell culture survival of the ompR mutant was decidedly lower than that of the wild-type strain, suggesting that the OmpR protein may play a significant role in protecting cells against intracellular conditions associated with macrophage phagocytosis.  相似文献   

19.
The Escherichia coli ompR2 allele ompR472 contains a valine-to-methionine point mutation at position 203, resulting in an OmpF-constitutive OmpC- outer membrane phenotype. In the present study, OmpR residue V-203 was replaced with glutamine (V203Q mutation), resulting in the same outer membrane phenotype. However, unlike the OmpFc OmpC- phenotype conferred by the OmpR(V203M) mutant protein, the OmpFc OmpC- phenotype produced by the OmpR(V203Q) mutation was suppressed by the envZ11(T247R) allele. Additional suppressors of OmpR(V203Q) were isolated by random mutagenesis. All suppressor mutations were found in the envZ gene and conferred an OmpC+ OmpF- phenotype in the presence of the wild-type ompR. These envZ11-like mutations mapped to a region different from those previously reported and were incapable of suppressing the ompR(V203M) allele. Our results indicate that while methionine or glutamine replacements could cause similar effects on OmpF and OmpC expression, they conferred different abilities on the mutant proteins to be suppressed by envZ.  相似文献   

20.
micF RNA, whose sequence is highly complementary to a 5'-portion of ompF mRNA, has been implicated in the osmoregulation and thermoregulation of the ompF porin gene in Escherichia coli. To define and characterize cis-acting regulatory regions upstream of the micF promoter, a series of deletions of the micF promoter fused to the lacZ gene were constructed. Two distinct regions, which function differently, were identified as cis-acting regulatory elements, namely, one responsible for OmpR-dependent activation and the other for OmpR-independent repression of micF expression. The former contains the OmpR-binding site, which simultaneously regulates both the genes, micF and ompC, in response to the medium osmolarity. The latter may be involved in an unknown regulatory process of micF expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号