首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《水生昆虫》2012,34(2):77-89
In this paper the results of a six-year study on riverine dragonflies (Odonata: Gomphidae) emergence based on the systematic collection of exuviae are presented. The exuviae were counted to determine variations in species composition, abundance and emergence pattern of gomphids at four different sites along the rivers Tisza and Szamos, as well as at a selected site in five different years. While the number of species decreased, the abundance of exuviae increased downstream the river Tisza. The total numbers of exuviae differed significantly between the dammed and non-dammed sites. The emergence of gomphids varied in initiation, synchronisation and also in duration between sites as well as between years. The onset of emergence was dependent mainly on the species-specific temperature sums, consequently earlier or later emergence resulted from the differences in the spring water temperature. The duration of emergence in G. flavipes and G. vulgatissimus was twice as long at the dammed site, characterised by a higher larval density, as at the other sites. In the degree of synchrony G. flavipes showed the emergence characteristics both of the spring and the summer species. Such interyear variations at the same site might have been attributed to the differences in annual fluctuations in the water temperature, indicating that rising temperatures may influence not only the onset of emergence but the synchrony as well.  相似文献   

2.
The diamondback moth, Plutella xylostella, is a worldwide pest of brassicas, and its biology and ecology have been extensively studied over recent years. Despite the importance of mathematical models to the management of insect pests, no stochastic model has been developed to date for P. xylostella. In this context, the study aimed to develop a stochastic model capable of describing the stage emergence of P. xylostella under field conditions. The stochastic model was developed using simple nonlinear functions based on the laboratory data on development times under constant temperatures. Comparison between estimated and observed cumulative proportions of egg hatch, pupation and adult emergence recorded in the field in Southern Brazil shows that the model accurately describes the stage emergence of P. xylostella. The developed model shows potential to estimate the stage emergence of P. xylostella under field conditions, and can add significant advances to the management of this pest.  相似文献   

3.
Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate‐driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among‐population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space‐temperature and time‐temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature‐mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.  相似文献   

4.
As global warming has lengthened the active seasons of many species, we need a framework for predicting how advances in phenology shape the life history and the resulting fitness of organisms. Using an individual‐based model, we show how warming differently affects annual cycles of development, growth, reproduction and activity in a group of North American lizards. Populations in cold regions can grow and reproduce more when warming lengthens their active season. However, future warming of currently warm regions advances the reproductive season but reduces the survival of embryos and juveniles. Hence, stressful temperatures during summer can offset predicted gains from extended growth seasons and select for lizards that reproduce after the warm summer months. Understanding these cascading effects of climate change may be crucial to predict shifts in the life history and demography of species.  相似文献   

5.
A checklist of Odonata has been compiled for Kenya. It is based on an inventory of museum material, publications and personal observations made between 1978 and 1997. Changes of scientific names and synonyms are documented. The list contains 194 valid dragonfly species recorded for Kenya.  相似文献   

6.
Doi H 《Biology letters》2008,4(4):388-391
Recent increases in air temperature have affected species phenology, resulting in the earlier onset of spring life-cycle events. Trends in the first appearance of adult dragonflies across Japan were analysed using a dataset consisting of observations from 1953 to 2005. Dynamic factor analysis was used to evaluate underlying common trends in a set of 48 time series. The appearance of the first adult dragonfly has significantly shifted to later in the spring in the past five decades. Generalized linear mixing models suggested that this is probably the result of increased air temperatures. Increased summer and autumn temperatures may provide longer bivoltine periods and a faster growth rate; thus, the second generation, which previously hatched in summer, can emerge in the autumn causing the size of the population of dragonflies that emerge in spring to decrease. It is also possible that reduced dragonfly populations along with human development are responsible for a delay in the first observed dragonflies in the spring. However, human population density did not appear to strongly affect the appearance date. This study provides the first evidence of a delay in insect phenological events over recent decades.  相似文献   

7.

Aim

Emerging aquatic insects link aquatic and terrestrial ecosystems across the Earth. Their diversity, abundance and functional importance means their emergence is an important phenological event. Nevertheless, aquatic insect emergence is understudied at a global scale compared to other phenological events, despite changing phenology being one of the most significant ecological responses to climate change. Here, we quantitatively describe the global patterns, and key proposed drivers, of seasonal aquatic insect emergence, to further understand how these patterns might change in the future.

Location

Global.

Time Period

1950–2018.

Major Taxa Studied

Emerging aquatic insects.

Methods

We extracted monthly emergence data from 86 studies across 163 sites to construct 1053 annual emergence curves. We parameterized the curves using two complementary metrics of seasonality, which were modelled against geographical and climatic variables to determine the direct and indirect relationships between them.

Results

We found clear global trends in aquatic insect emergence patterns across latitude and underlying climates. Between-month variation and temporal restriction of emergence increased from the equator to the poles, going from small, aseasonal fluctuations in the warm, thermally stable tropics to large, seasonal peaks at cooler, thermally unstable higher latitudes. While emergence trends were associated with gradients of precipitation, temperature was the dominant climatic driver of the latitudinal trend.

Main Conclusions

These findings suggest that with climate warming, aquatic insects will emerge over longer periods, diluted in abundances and displaying less seasonal emergence patterns with smaller between-month fluctuations. This may result in disruption of ecosystem functions seasonally dependent on aquatic insects, such as riparian predation, pollination and disease transmission. The cross-ecosystem life cycle of aquatic insects means changes to their seasonal patterns of emergence will have impacts in both aquatic and terrestrial ecosystems.  相似文献   

8.
Frank Suhling 《Hydrobiologia》1995,302(2):113-118
The emergence of Onychogomphus uncatus from three stretches at two adjacent canals in Southern France was compared in 1993. Whereas 50% of annual emergence from the two stretches at one canal had occurred after 25 and 36 days, respectively, it had occurred after 5 days at the second, where emergence began 14 days earlier. At the second canal most of the larvae of one generation had overwintered in the final instar but at the first canal only half did so. These differences correlate with greater annual fluctuations of temperature at the second canal which are responsible for high temporal synchronisation. Other factors that may cause differences in seasonal regulation, such as drying up and density, are discussed. Differences exist also in sex ratio and abundance of emerging individuals, particularly between the two collection sites at the first canal.  相似文献   

9.
Sixteen floating, box type emergence traps, each covering 0.1 m2, were placed along 150 m of a third-order stretch of the Bigoray River, a slow-flowing, vegetation-choked, brown-water muskeg stream. Effects of trap design, trap shading, length of sampling interval, and stream velocity on the number of midges caught was examined. Of the 112 species of Chironomidae caught, 32 species made up 90% of the catch and their emergence phenology is described in detail. There were more rare species than expected from Preston's lognormal distribution. Percentage of Bigoray species belonging to Tanypodinae, Orthocladiinae, Chironomini and Tanytarsini was 18%, 43%, 20%, and 19%, and was compared with 27 other studies on lotic chironomids. During the 140-day emergence period an average of 19.3 × 103 chironomids emerged per square meter of stream. Based on changes in male:female ratios throughout a species emergence period, it was postulated that 30% of the Bigoray chironomid species were univoltine, 50% were bivoltine, and 20% were trivoltine.  相似文献   

10.
Arrowhead scale, Unaspis yanonensis (Kuwana) (Hemiptera: Diaspididae), feeds on the foliage, stems, and fruits of citrus trees and causes tree dieback when heavy infestations occur. Multi‐Gaussian models (three‐ and two‐peak models) were developed for better management of the arrowhead scale in citrus orchards and later validated against several field data sets. The oviposition activities observed in the laboratory were highly correlated with both models (r2 = 0.88). The three peak oviposition times estimated by the three‐peak model were at 282, 500, and 694 degree‐days, based on a low threshold temperature of 13 °C. Also, the peak oviposition times of the two‐peak model were identical to the first and second peak times of the three‐peak model. Both models accurately predicted the first oviposition peak period of field populations. In the later peak period, both model outputs well predicted the actual crawler populations, except for the tail end of actual peak periods which were underestimated in the two‐peak model and overestimated in the three‐peak model. Overall, both models showed a strong robustness for correlation with actual data. The newly developed multi‐Gaussian models better described the actual population phenology of U. yanonensis than the previously published models, and either model would be useful for the management of U. yanonensis in the field.  相似文献   

11.
Based on a population genetic model of mixed strategies determined by alleles of small effect, we derive conditions for the evolution of social learning in an infinite-state environment that changes periodically over time. Each mixed strategy is defined by the probabilities that an organism will commit itself to individual learning, social learning, or innate behavior. We identify the convergent stable strategies (CSS) by a numerical adaptive dynamics method and then check the evolutionary stability (ESS) of these strategies. A strategy that is simultaneously a CSS and an ESS is called an attractive ESS (AESS). For certain parameter sets, a bifurcation diagram shows that the pure individual learning strategy is the unique AESS for short periods of environmental change, a mixed learning strategy is the unique AESS for intermediate periods, and a mixed learning strategy (with a relatively large social learning component) and the pure innate strategy are both AESS's for long periods. This result entails that, once social learning emerges during a transient era of intermediate environmental periodicity, a subsequent elongation of the period may result in the intensification of social learning, rather than a return to innate behavior.  相似文献   

12.
Responses of biota to climate change take a number of forms including distributional shifts, behavioural changes and life history changes. This study examined an extensive set of biological records to investigate changes in the timing of life history transitions (specifically emergence) in British Odonata between 1960 and 2004. The results show that there has been a significant, consistent advance in phenology in the taxon as a whole over the period of warming that is mediated by life history traits. British odonates significantly advanced the leading edge (first quartile date) of the flight period by a mean of 1.51 ±0.060 (SEM, n=17) days per decade or 3.08±1.16 (SEM, n=17) days per degree rise in temperature when phylogeny is controlled for. This study represents the first review of changes in odonate phenology in relation to climate change. The results suggest that the damped temperature oscillations experienced by aquatic organisms compared with terrestrial organisms are sufficient to evoke phenological responses similar to those of purely terrestrial taxa.  相似文献   

13.
Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of long‐term phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of long‐term data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climate‐induced phenological shifts has focused on terrestrial pairwise resource–consumer interactions, especially those between plants and insects.  相似文献   

14.
[目的]明确实蝇对气候变暖的响应特征,研究未来气候变化背景下柑橘大实蝇的灾变规律及防控措施的优化。[方法]以湖北省宜昌市为例,收集该地区柑橘大实蝇历年的物候数据与同期温度数据,通过线性回归模型分析成虫羽化始期、羽化高峰期、羽化结束期、产卵始期、产卵高峰期和产卵结束期的年际变化情况和与温度升高的关系。[结果]1981—2020年,宜昌市年均温和四季均温均有不同程度的上升,春季均温升温最为显著。近20年间,柑橘大实蝇在宜昌市呈羽化发生提前且产卵为害延迟的态势,且羽化和产卵历期呈缩短的态势。若宜昌市年均温提升1 ℃,柑橘大实蝇羽化始期和高峰期分别延迟0.4746和1.026 d,羽化结束期提前0.0227 d,总体呈羽化延迟且缩短趋势;产卵始期提前4.286 d,高峰期和结束期分别延迟1.173和1.081 d,总体呈产卵提前且延长趋势。[结论]气候变暖对宜昌市柑橘大实蝇的羽化和产卵产生一定的影响,对未来气候变化背景下柑橘大实蝇的灾变规律及防控措施的优化具有重要意义。  相似文献   

15.
Summary A simple statistical model is constructed, describing the transition from disorder to order in a population of mutually catalytic molecules undergoing random mutations. The consequences of the model are calculated, and its possible relevance to the problem of the origin of life is discussed. The main conclusion of the analysis is that the model allows populations of several thousand molecular units to make the transition from disorder to order with reasonable probability.  相似文献   

16.
Any population whose members are subject to extrinsic mortality should exhibit an increase in mortality with age. Nevertheless, the prevailing opinion is that populations of adult damselflies and dragonflies do not exhibit such senescence. Here, we challenge this contention by fitting a range of demographic models to the data on which these earlier conclusions were based. We show that a model with an exponential increase in age-related mortality (Gompertz) generally provides a more parsimonious fit than alternative models including age-independent mortality, indicating that many odonates do indeed senesce. Controlling for phylogeny, a comparison of the daily mortality of 35 odonate species indicates that although male and female mortalities are positively correlated, mortality tends to be higher in males of those species that exhibit territoriality. Hence, we show for the first time that territoriality may impose a survivorship cost on males, once the underlying phylogenetic relationships are accounted for.  相似文献   

17.
The migration patterns, timing and biological characteristics of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, were examined over the period 1978–2008. A distinct change in the timing of the smolt run was detected with progressively earlier emigration periods evident across the time series. The shift in run timing ranged from 3·6 to 4·8 days 10 years?1 for a range of standard migratory audit points. The timing of smolt emigration has been linked to ambient river temperature patterns. Distinct seasonal patterns were evident for biological characteristics of River Bush smolts with mean age and fork length decreasing throughout the emigration period. Marine survival patterns in 1 sea winter River Bush S. salar were strongly influenced by the run timing of the preceding smolt year such that later emigrating cohorts demonstrated increased survival. Possible mechanisms for this relationship based on local climatic variation have been explored, including the effect of potential thermal mismatch between freshwater and marine environments.  相似文献   

18.
19.
Temperature dependence of two parameters in a photosynthesis model   总被引:5,自引:2,他引:5  
The temperature dependence of the photosynthetic parameters Vcmax, the maximum catalytic rate of the enzyme Rubisco, and Jmax, the maximum electron transport rate, were examined using published datasets. An Arrehenius equation, modified to account for decreases in each parameter at high temperatures, satisfactorily described the temperature response for both parameters. There was remarkable conformity in Vcmax and Jmax between all plants at Tleaf < 25 °C, when each parameter was normalized by their respective values at 25 °C (Vcmax0 and Jmax0), but showed a high degree of variability between and within species at Tleaf > 30 °C. For both normalized Vcmax and Jmax, the maximum fractional error introduced by assuming a common temperature response function is < ± 0·1 for most plants and < ± 0·22 for all plants when Tleaf < 25 °C. Fractional errors are typically < ± 0·45 in the temperature range 25–30 °C, but very large errors occur when a common function is used to estimate the photosynthetic parameters at temperatures > 30 °C. The ratio Jmax/Vcmax varies with temperature, but analysis of the ratio at Tleaf = 25 °C using the fitted mean temperature response functions results in Jmax0/Vcmax0 = 2·00 ± 0·60 (SD, n = 43).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号