首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN(4)) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN(4) appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS(4)), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN(4). The inhibitory effect of fluoride ions on the membrane binding of both AlPcN(4) and AlPcS(4) supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN(4) and AlPcS(4) in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN(4) and AlPcS(4) as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN(4) with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN(4) fluorescence quenching.  相似文献   

2.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   

3.
A quantitative study of calcium-ion binding by the negatively-charged phospholipid methylphosphatidic acid is presented. Experimental results are compared with the predictions of the Gouy-Chapman theory, taking into account both the ions bound at the membrane surface and the ions held in the diffuse layer. This theory suffices to explain the titration of the calcium/lipid system, but fails to explain completely the behaviour of the ordered-fluid transition temperature, which shows a splitting that according to electrostatic theory alone should not occur. The dependence of the calcium-lipid binding constant. upon 1: 1 electrolyte concentration is correctly predicted by the theory; the latter however gives equations which can only be solved numerically. A simple, approximate equation is therefore given (in the text, eq. 34) for the prediction of the degree of calcium binding to a negatively-charged lipid membrane.  相似文献   

4.
The binding of polymyxin-B to lipid bilayer vesicles of synthesis phosphatidic acid was studied using fluorescence, ESR spectroscopy and electron microscopy. 1,6-Diphenylhexatriene (which exhibits polarized fluorescence) and pyrene decanoic acid (which forms excimers) were used as fluorescene probes to study the lipid phase transition.The polymyxin binds strongly to negatively charged lipid layers. As a result of lipid/polymyxin chain-chain interactions, the transition temperature of the lipid. This can be explained in terms of a slight expansion of the crystalline lipid lattice (Lindeman's rule). Upon addition of polymyxin to phosphatidic acid vesicles two rather sharp phase transitions (with ΔT = 5°C) are observed. The upper transition (at Tu) is that of the pure lipid and the lower transition (at T1) concerns the lipids bound to the peptide. The sharpness of these transitions strongly indicates that the bilayer is characterized by a heterogeneous lateral distribution of free and bound lipid regions, one in the crystalline and the other in the fluid state. Such a domain structure was directly observed by electron microscopy (freeze etching technique). In (1:1) mixtures of dipalmitoyl phosphatidic acid and egg lecithin, polymyxin induces the formation of domains of charged lipid within the fluid regions of egg lecithin.With both fluorescence methods the fraction of lipid bound to polymxin-B as a function of the peptide concentration was determined. S-shaped binding curves were obtained. The same type of binding curve is obtained for the interaction action of Ca2+ with phosphatidic acid lamellae, while the binding of polylysine to such membranes is characterized by a linear or Langmuir type binding curve. The S-shaped binding curve can be explained in terms of a cooperative lipid-ligand (Ca2+, polymyxin) interaction.A model is proposed which explains the association of polymyxing within the membrane plane in terms of elastic forces caused by the elastic distortion of the (liquid crystalline) lipid layer by this highly asymmetric peptide.  相似文献   

5.
We provide evidence that matrix metalloproteinase-7 (MMP-7) interacts with anionic, cationic and neutral lipid membranes, although it interacts strongest with anionic membranes. While the catalytic activity of the enzyme remains unaffected upon binding to neutral and negatively charged membranes, it is drastically impaired upon binding to the positively charged membranes. The structural data reveal that the origin of these features lies in the "bipolar" distribution of the electrostatic surface potentials on the crystallographic structure of MMP-7.  相似文献   

6.
The binding of aqueous anions (ClO4-, SCN-, I-, and NO3-) to lipid bilayer membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated using deuterium (2H) and phosphorus-31 (31P) nuclear magnetic resonance (NMR) spectroscopy. The ability of these anions to influence the 2H NMR quadrupole splittings of POPC, specifically labeled at the alpha or beta position of the choline head group, increased in the order NO3- much less than I- less than SCN- less than ClO4-. In the presence of these chaotropic anions, the quadrupole splitting increased for alpha-deuterated POPC and decreased for beta-deuterated POPC, indicating a progressive accumulation of negative charge at the membrane surface. Calibration of the 2H NMR quadrupole splittings with the amount of membrane-bound anion permitted binding isotherms to be generated for perchlorate, thiocyanate, and iodide, up to concentrations of 100 mM. The binding isotherms were analyzed by considering electrostatic contributions, according to the Gouy-Chapman theory, as well as chemical equilibrium contributions. For neutral POPC membranes, we obtained ion association constants of 32, 80, and 115 M-1 for iodide, thiocyanate, and perchlorate, respectively. These values increase in the order expected for a Hofmeister series of anions. We conclude that the factor determining whether a particular anion will bind to lipid bilayers is the ease with which that anion loses its hydration shell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The binding of polymyxin-B to lipid bilayer vesicles of synthetic phosphatidic acid was studied using fluorescence, ESR spectroscopy and electron microscopy. 1,6-Diphenylhexatriene (which exhibits polarized fluorescence) and pyrene decanoic acid (which forms excimers) were used as fluorescence probes to study the lipid phase transition. The polymyxin binds strongly to negatively charged lipid layers. As a result of lipid/polymyxin chain-chain interactions, the transition temperature of the lipid. This can be explained in terms of a slight expansion of the crystalline lipid lattice (Lindeman's rule). Upon addition of polymyxin to phosphatidic acid vesicles two rather sharp phase transitions (width deltaT = 5 degrees C) are observed. The upper transition (at Tu) is that of the pure lipid and the lower transition (at T1) concerns the lipid bound to the peptide. The sharpness of these transitions strongly indicates that the bilayer is characterized by a heterogeneous lateral distribution of free and bound lipid regions, one in the crystalline and the other in the fluid state. Such a domain structure was directly observed by electron microscopy (freeze etching technique). In (1 : 1) mixtures of dipalmitoyl phosphatidic acid and egg lecithin, polymyxin induces the formation of domains of charged lipid within the fluid regions of egg lecithin. With both fluorescence methods the fraction of lipid bound to polymyxin-B as a function of the peptide concentration was determined. S-shaped binding curves were obtained. The same type of binding curve is obtained for the interaction of Ca2+ with phosphatidic acid lamellae, while the binding of polylysine to such membranes is characterized by a linear or Langmuir type binding curve. The S-shaped binding curve can be explained in terms of a cooperative lipid-ligand (Ca2+, polymyxin) interaction. A model is proposed which explains the association of polymyxin within the membrane plane in terms of elastic forces caused by the elastic distortion of the (liquid crystalline) lipid layer by this highly asymmetric peptide.  相似文献   

8.
The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally, it is found that the binding capacity for the native protein is increased at low ionic strength to a value that is greater than that for complete surface coverage, and that corresponds more closely to neutralization of the effective charge (determined from the ionic strength dependence), rather than of the total net charge, on the protein. Electron spin resonance experiments with spin-labeled lipids indicate that this different mode of binding arises from a penetration or disturbance of the bilayer surface by the protein that may alleviate the effects of in-plane interactions under conditions of strong binding.  相似文献   

9.
The interactions of the assembly factor P17 of bacteriophage PRD1 with liposomes were investigated by static light scattering, fluorescence spectroscopy, and differential scanning calorimetry. Our data show that P17 binds to positively charged large unilamellar vesicles composed of the zwitterionic 1-palmitoyl-2-oleoyl-phosphatidylcholine and sphingosine, whereas only a weak interaction is evident for 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles. P17 does not bind to negatively charged membranes composed of 1-palmitoyl-2-oleoyl-phosphatidylglycerol and 1-palmitoyl-2-oleoyl-phosphatidylcholine. Our differential scanning calorimetry results reveal that P17 slightly perturbs the phase behaviour of neutral phosphatidylcholine and negatively charged multilamellar vesicles. In contrast, the phase transition temperature of positively charged dimyristoylphosphatidylcholine/sphingosine multilamellar vesicles (molar ratio 9 : 1, respectively) is increased by approximately 2.4 degrees C and the half width of the enthalpy peak broadened from 1.9 to 5.6 degrees C in the presence of P17 (protein : lipid molar ratio 1 : 47). Moreover, the enthalpy peak is asymmetrical, suggesting that lipid phase separation is induced by P17. Based on the far-UV CD spectra, the alpha-helicity of P17 increases upon binding to positively charged micelles composed of Triton X-100 and sphingosine. We propose that P17 can interact with positively charged lipid membranes and that this binding induces a structural change on P17 to a more tightly packed and ordered structure.  相似文献   

10.
Experimental results on the effect of electrostatics on bilayer phase transitions are compared with corresponding data for monolayers and the predictions of electrical double layer theory. The two substantial conclusions which emerge are that: (i) double layer theory based on a continuous surface charge distribution cannot explain all the relevant data, a situation which may be improved by taking into account the discrete nature of the surface charge distribution; (ii) the crystal - liquid crystal phase transition of charged bilayer membranes is always a continuous one which takes place through an intermediate state consisting of both fluid and frozen domains.  相似文献   

11.
Cell surface negativity and the binding of positively charged particles   总被引:3,自引:0,他引:3  
The binding of positively charged, colloidal ferric oxide particles to the surfaces of Ehrlich ascites tumour cells, before and after incubation with neuraminidase and/or ribonuclease, has been studied by electron microscopy. An attempt has been made to correlate the amount of binding observed, with the electrophoretic mobilities of the cells under similar conditions to those under which they were exposed to the ferric oxide. Although a progressive loss of staining was observed with progressive loss of cellular net surface negativity, neither property was predictable from knowledge of the other. Some of the difficulties inherent in quantitative staining techniques of this type are discussed.  相似文献   

12.
J Rosing  G Tans  H Speijer  R F Zwaal 《Biochemistry》1988,27(25):9048-9055
The activation of prothrombin by factor Xa is strongly accelerated by negatively charged phospholipids plus calcium ions. In this paper we report that positively charged membranes can also stimulate prothrombin activation provided that the activation reaction is carried out in the absence of calcium ions. Membranes composed of a mixture of phosphatidylcholine (PC) and positively charged lipids like stearylamine, sphingosine, or hexadecyltrimethylammonium bromide caused a more than 1000-fold increase of the rate of prothrombin activation. Prothrombin activation by the factor Xa-factor Va complex was also considerably stimulated by such membranes. Stimulation of prothrombin activation by positively charged membranes was suppressed at high ionic strength. This suggests that electrostatic attraction of negatively charged proteins by positively charged membranes is the major driving force in the association of prothrombin and factor Xa with the lipid surface. Calcium ions strongly inhibited prothrombin activation on vesicles composed of PC and stearylamine (80/20 M/M), which indicates that the regions of prothrombin and/or factor Xa containing gamma-carboxyglutamic acid (gla) are important for the interaction of these proteins with positively charged membranes. The importance of the gla domain was confirmed by the observation that PC/stearylamine vesicles had much less effect on the reactions between proteins that lack gla residues [gla-domainless (des-1-45) prothrombin, prethrombin 1, prethrombin 2, or gla-domainless (des-1-44) factor Xa]. The efficiency of prothrombin and prothrombin derivatives to act as substrate decreased in the order prothrombin greater than des-1-45-prothrombin = prethrombin 1 greater than prethrombin 2, while prothrombin activation by gla-domainless (des-1-44) factor Xa was hardly stimulated by positively charged membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Anion-induced fluorescence quenching of lipid probes incorporated into the liposomal membrane was used to study the binding of anions to the lipid membrane. Lipid derivatives bearing nonpolar fluorophore located either in the proximity of the polar headgroups (anthrylvinyl-labelled phosphatidylcholine, ApPC; methyl 4-pyrenylbutyrate, MPB) or in the polar region (rhodamine 19 oleyl ester, OR19) of the bilayer were used as probes. The binding of iodide to the bilayers of different compositions was studied. Based on the anion-induced quenching of the fluorescence, the isotherm of adsorption of the quencher (iodide) to the membrane was plotted. For anions, which are non-quenchers or weak quenchers (thiocyanate, perchlorate or trichloroacetate), the binding parameters were obtained from the data of the competitive displacement of iodide by these anions. The association constants of the anion binding to the bilayer (Ka) were determined for the stoichiometry of 1 ion/1 lipid and also for the case of independent anion binding. At the physiological concentration of the salt, which does not bind noticeably to the membrane (150 mM NaCl), anion binding could be satisfactorily described by the Langmuir isotherm. The approach applied here offers new possibilities for the studies of ion-membrane interactions using fluorescent probes.  相似文献   

14.
Experimental results on the effect of electrostatics on bilayer phase transitions are compared with corresponding data for monolayers and the predictions of electrical double layer theory. The two substantial conclusions which emerge are that: (i) double layer theory based on a continuous surface charge distribution cannot explain all the relevant data, a situation which may be improved by taking into account the discrete nature of the surface charge distribution; (ii) the crystal - liquid crystal phase transition of charged bilayer membranes is always a continuous one which takes place through an intermediate state consisting of both fluid and frozen domains.  相似文献   

15.
It is demonstrated by direct measurement of surface radioactivity that the cationic polypeptide antibiotic polymyxin B is specifically adsorbed to negatively charged lipid monolayers. The latter attracted the following amounts of the biologically active mono-N[14C]acetylpolymyxin B derivative (PX): lipid A from Proteus mirabilis, 0.17; phosphatidic acid, 0.12; phosphatidylglycerol and phosphatidylserine, 0.11; dicetylphosphate, 0.107; sulfoquinovosyldiglyceride, 0.104; phosphatidylinositol and cardiolipin, 0.095; and phosphatidylethanolamine, 0.017 μg/cm2. Adsorption of PX to phosphatidylcholine, monogalactosyldiglyceride and stearylamine was almost or completely zero. Total lipids from Escherichia coli adsorbed 0.057 in comparison to 0.051 μg PX/cm2 of an artificial mixture of phosphatidylethanolamine/phosphatidylglycerol/cardiolipin in the proportions 75 : 25 : 5. The concentration of the surface active PX at the air/water interphase was 0.091 μg/cm2. These saturation surface concentrations of PXat lipid monolayers were reached at 1 μg/ml bulk concentrations in 2 mM NaCl/1 mM Tris · HCl, pH 7.2. They decreased with decreasing surface charge density of the adsorbing monolayer. In an experiment with cardiolipin/phosphatidylethanolamine mixtures it was shown that two molecules of cardiolipin induced adsorption of one molecule PX giving a 1 : 1 ratio with regard to positive and negative charges. This could be due to a similar charge density of about one charge per 40–50 Å2 in PX and lipid bilayers composed of phospholipids. The electrostatic PX-lipid interaction was severely inhibited by 10?2 and 10?1 M Ca2+ and Na+, respectively. It is discussed that the specificity of PX against Gram-negative bacteria is caused by the occurrence of lipid A, phosphatidylglycerol and cardiolipin at the cell surface of these microorganisms.  相似文献   

16.
The effect of trivalent (Gd(3+) and Yb(3+)) and divalent (Be(2+) and Ca(2+)) cations on suspensions of multilamellar liposomes formed from brain PS and DMPS has been studied using microelectrophoresis and DSC techniques, respectively. The zeta potential values have been shown to strongly depend on the total lipid concentration in the suspension. At moderate concentrations of the polyvalent cations, the total cation concentration exceeds the bulk one several times due to adsorption of cations to the liposomes. A modification of the Gouy-Chapman-Stern theory in the case of unknown bulk concentration of the polyvalent cation is presented. An intrinsic association constant for Be(2+) ions was evaluated to be about K(2) approximately 50 M(-1). The algorithm for estimating the concentrations of the accessible (to exogenously added polyvalent cations) lipid-binding sites is described. These values are consistent with the subsurface concentrations of the polyvalent cations, which monotonously increase with the total concentration of the polyvalent cations. The calculated lipid accessibilities are shown to be in accordance with the DSC data.  相似文献   

17.
Modeling charged protein side chains in lipid membranes   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

18.
The content of cholesterol in red cell and platelet membranes was lowered in rabbits with experimental atherosclerosis after intravenous injection of positively charged micelles of soybean phosphatidylcholine. That lowering was accompanied by a reduction in membrane microviscosity, rise of the activity of Na,K- and Ca-ATPases of red cells, and a decrease in the rate of the ADP- and collagen-induced platelet aggregation. Injection of phosphatidylcholine gave rise to an increase in the blood serum content of phospholipids and cholesterol in high density lipoprotein fractions, to a reduction in the content of triglycerides and the atherogenicity index, as well as to the lowering of the microviscosity of high density lipoproteins. The aortal area affected by atherosclerotic lesions was 2 times less in the group of animals given phosphatidylcholine.  相似文献   

19.
20.
β-Galactosylsphingosine or psychosine (PSY) is a single chain sphingolipid with a cationic group, which is degraded in the lysosome lumen by β-galactosylceramidase during sphingolipid biosynthesis. A deficiency of this enzyme activity results in Krabbe's disease and PSY accumulation. This favors its escape to extralysosomal spaces, with its pH changing from acidic to neutral. We studied the interaction of PSY with model lipid membranes in neutral conditions, using phospholipid vesicles and monolayers as classical model systems, as well as a complex lipid mixture that mimics the lipid composition of myelin. At pH 7.4, when PSY is mainly neutral, it showed high surface activity, self-organizing into large structures, probably lamellar in nature, with a CMC of 38 ± 3 μM. When integrated into phospholipid membranes, PSY showed preferential partition into disordered phases, shifting phase equilibrium. The presence of PSY reduces the compactness of the membrane, making it more easily compressible. It also induces lipid domain disruption in vesicles composed of the main myelin lipids. The surface electrostatics of lipid membranes was altered by PSY in a complex manner. A shift to positive zeta potential values evidenced its presence in the vesicles. Furthermore, the increase of surface potential and surface water structuring observed may be a consequence of its location at the interface of the positively charged layer. As Krabbe's disease is a demyelinating process, PSY alteration of the membrane phase state, lateral lipid distribution and surface electrostatics appears important to the understanding of myelin destabilization at the supramolecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号