首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Our recent study indicated that polyglutamine-expanded ataxin-7-Q75 induced apoptotic death of cultured cerebellar neurons by downregulating Bcl-x(L) expression and activating mitochondrial apoptotic cascade. Mutant polyglutamine-expanded proteins are believed to impair the proteolytic function of ubiquitin-proteasome system by sequestering components of proteasomes. Proteasome degradation of IkappaBalpha permits nuclear translocation of NF-kappaB and is required for continuous NF-kappaB activity, which supports the survival of cultured cerebellar neurons by inducing Bcl-x(L) expression. Thus, we tested the hypothesis that mutant ataxin-7-Q75 causes proteasome dysfunction and impairs NF-kappaB activity, leading to reduced Bcl-x(L) expression, caspase activation and cerebellar neuronal death. EMSA assays indicate that DNA-binding activity of NF-kappaB was significantly decreased in cerebellar neurons expressing ataxin-7-Q75. Similar to mutant ataxin-7-Q75, NF-kappaB inhibitor APEQ induced cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Mutant ataxin-7-Q75 inhibited the proteolytic activity of proteasomes in cerebellar neurons. Proteasome inhibitor MG132 also caused cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Both ataxin-7-Q75 and MG132 caused the cytosolic accumulation of IkappaBalpha in cerebellar neurons. Mutant ataxin-7-Q75 or MG132 increased the cytosolic level of NF-kappaB p65 and decreased the nuclear NF-kappaB p65 level. Our study provides the evidence that polyglutamine-expanded ataxin-7-Q75 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons.  相似文献   

8.
9.
10.
11.
12.
13.
14.
We have examined the behavior of the phosphorothioate antisense Rel A (NF-kappaB p65) oligodeoxynucleotide (oligo) and related molecules. Because of the presence of a G-tetrad near its 5'terminus, this molecule is capable of forming tetraplexes and other higher order structures in a temperature and time dependent manner. The G-tetrad in the phosphodiester congener is protected from methylation by dimethylsulfate when the oligomer is 3'-phosphorylated. However, this protection is completely lost when it is 5'phosphorylated, indicating that the formation of at least some higher order structures has been blocked. In addition, we also prevented tetraplex formation by substitution of 7-deazaguanosine (7-DG) for guanosine at several positions within and outside of the tetrad. This substitution retains Watson-Crick base pair hybridization but prevents Hoogsteen base-pair interactions. When murine K-Balb cells were treated with 20microM antisense RelA oligo, complete blockade of nuclear translocation of RelA was observed. However, this effect was virtually entirely abrogated in most cases by 7-DG substitution within the tetrad, but retained when the substitution was made 3' to the tetrad. The AS RelA-induced downregulation of Sp-1 activity behaved similarly after 7-DG substitution. Thus, the parent phosphorothioate AS RelA molecule cannot be a Watson-Crick antisense agent. However, these conclusions cannot be extrapolated to other G-tetrad containing oligomers and each must be evaluated individually.  相似文献   

15.
Protein phosphatase type 1 catalytic subunit (PP1c) is a serine/threonine phosphatase involved in the dephosphorylation of many proteins in eukaryotic cells. It associates with several known targeting or regulatory subunits that directly regulate PP1c activity toward specific substrates. The recently identified Phosphatase Nuclear Targeting Subunit (PNUTS) binds to PP1c and inhibits PP1 activity toward phosphorylase a. One of the substrates of PP1c has been shown to be the cell cycle regulatory protein, Retinoblastoma (pRb). In this study, we show that PNUTS dissociates from PP1c under mildly hypoxic cell growth conditions that lead to an increase of PP1c activity toward pRb. We developed an assay that measures pRb-directed PP1c activity and show that a GST-PNUTS fusion protein inhibits phosphatase activity toward pRb when using PP1c from cell lysates, GST-PP1c, or purified PP1c. These studies suggest that PNUTS is involved in the regulation of PP1c activity toward pRb.  相似文献   

16.
17.
Human myometrial cells respond to the endotoxin lipopolysaccharide (LPS) by activation of protein kinase C (PKC) zeta and nuclear translocation of the p65 subunit of NF-kB. Our first objective was to determine the expression of TLR4 in cultured myometrial cells. Positive immunoreactivity observed for TLR4 suggests that myometrial cells have the potential to respond to LPS. To confirm that LPS signals via TLR4, the ability of an anti-TLR4 neutralizing antibody to block LPS-induced translocation of p65 was demonstrated. To determine whether LPS-induced nuclear translocation of p65 is mediated through the PKC pathway, myometrial cells were treated with various inhibitors of the PKC isoforms already characterized in human myometrium. Neither the selective conventional PKC inhibitor nor the inhibitor of PKCdelta affected NF-kB activation. By contrast, we found that treatment of myometrial cells with an antisense against PKCzeta affect LPS-induced nuclear translocation of the p65 subunit of NF-kB. Accordingly, our data support the notion that PKCzeta is essential for LPS-induced NF-kB p65 subunit nuclear translocation in human myometrial cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号