首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horsegram (Dolichos biflorus), a protein-rich leguminous pulse, is a crop native to Southeast Asia and tropical Africa. The seeds contain multiple forms of Bowman-Birk type inhibitors. The major inhibitor HGI-III, from the native seed with 76 amino acid residues exists as a dimer. The amino acid sequence of three isoforms of Bowman-Birk inhibitor from germinated horsegram, designated as HGGI-I, HGGI-II, and HGGI-III, have been obtained by sequential Edman analyses of the pyridylethylated inhibitors and peptides derived therefrom by enzymatic and chemical cleavage. The HGGIs are monomers, comprising of 66, 65, and 60 amino acid residues, respectively. HGGI-III from the germinated seed differs from the native seed inhibitor in the physiological deletion of a dodecapeptide at the amino terminus and a tetrapeptide, -SHDD, at the carboxyl terminus. The study of the state of association of HGI-III, by size-exclusion chromatography and SDS-PAGE in the presence of 1 mM ZnCl2, has revealed the role of charged interactions in the monomer <--> dimer equilibria. Chemical modification studies of Lys and Arg have confirmed the role of charge interactions in the above equilibria. These results support the premise that a unique interaction, which stabilizes the dimer, is the cause of self-association in the inhibitors. This interaction in HGI-III involves the epsilon-amino group of the Lys24 (P1 residue) at the first reactive site of one monomer and the carboxyl of an Asp86 at the carboxyl terminus of the second monomer. Identification of the role of these individual amino acids in the structure and stability of the dimer was accomplished by chemical modifications, multiple sequence alignment of legume Bowman-Birk inhibitors, and homology modeling. The state of association may also influence the physiological and functional role of these inhibitors.  相似文献   

2.
Dry mature seeds of winged bean (Psophocarpus tetragonolobus L., DC.) (WB) contain several proteinase inhibitors. Two-dimensional gel analysis of WB seed protein followed by activity visualization using a gel-X-ray film contact print technique revealed at least 14 trypsin inhibitors (TIs) in the range of 28-6 kD. A total of seven inhibitors (WBTI-1 to 7) were purified by heat treatment and gel filtration followed by elution from preparative native gels. Based on their biochemical characterization such as molecular mass, pI, heat stability, and susceptibility to inactivation by reducing agents, WBTI-1 to 4 are Kunitz type inhibitors while WBTI-5 to 7 are classified as Bowman-Birk type serine proteinase inhibitors. Although Kunitz type TIs (20-24 kD) of WB have been reported, the smaller TIs that belong to the Bowman-Birk type have not been previously characterized. Seven major TIs isolated from WB seed were individually assessed for their potential to inhibit the gut proteinases (HGP) of Helicoverpa armigera, a pest of several economically important crops, which produces at least six major and several minor trypsin/chymotrypsin/elastase-like serine proteinases in the gut. WBTI-1 (28 kD) was identified as a potent inhibitor of HGP relative to trypsin and among the other WBTIs; it inhibited 94% of HGP activity while at the same concentration it inhibited only 22% of trypsin activity. WBTI-2 (24 kD) and WBTI-4 (20 kD) inhibited HGP activity greater than 85%. WBTI-3,-5,-6 and-7 showed limited inhibition of HGP as compared with trypsin. These results indicate that WBTIs have different binding potentials towards HGP although most of the HGP activity is trypsin-like. We also developed a simple and versatile method for identifying and purifying proteinase inhibitors after two-dimensional separation using the gel-X-ray film contact print technique.  相似文献   

3.
Five serine proteinase inhibitors (Mirabilis jalapa trypsin inhibitors, MJTI I and II and Spinacia oleracea trypsin inhibitors, SOTI I, II, and III) from the garden four-o'clock (M. jalapa) and spinach (S. oleracea) seeds were isolated. The purification procedures included affinity chromatography on immobilized methylchymotrypsin in the presence of 5M NaCl, ion exchange chromatography and/or preparative electrophoresis, and finally RP-HPLC on a C-18 column. The inhibitors, crosslinked by three disulfide bridges, are built of 35 to 37 amino-acid residues. Their primary structures differ from those of known trypsin inhibitors, but showed significant similarity to the antimicrobial peptides isolated from the seeds of M. jalapa (MJ-AMP1, MJ-AMP2), Mesembryanthemum crystallinum (AMP1), and Phytolacca americana (AMP-2 and PAFP-S) and from the hemolymph of Acrocinus longimanus (Alo-1, 2 and 3). The association equilibrium constants (K(a)) with bovine beta-trypsin for the inhibitors from M. jalapa (MJTI I and II) and S. oleracea (SOTI I-III) were found to be about 10(7)M(-1). Fully active MJTI I and SOTI I were obtained by solid-phase peptide synthesis. The disulfide bridge pattern in both inhibitors (Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6) was established after their digestion with thermolysin and proteinase K followed by the MALDI-TOF analysis.  相似文献   

4.
Inga laurina is a tree that belongs to the Mimosoideae sub-family of the Leguminosae. A protein inhibitor of trypsin (ILTI) was isolated from its seeds by ammonium sulphate precipitation, ion-exchange chromatography and rechromatography on an HiTrap Q ion-exchange column. By SDS-PAGE, ILTI yielded a single band with a Mr of 20 kDa with or without reduction. ILTI was found to be a single polypeptide chain containing 180 amino acids, the sequence of which was clearly homologous to the Kunitz family of serine protease plant protein inhibitors, and it also showed significant similarity to the seed storage proteins, sporamin and miraculin. However, ILTI displayed major differences to most other Kunitz inhibitors in that it contained only one disulfide bridge, and did not have two polypeptide chains as for the majority of other Kunitz inhibitors purified from Mimosoideae species. ILTI inhibited bovine trypsin with an equilibrium dissociation constant (K(i)) of 6 x 10(-9)M, but did not inhibit chymotrypsin, papain and alpha-amylase. Its amino acid sequence contained a Lys residue at the putative reactive site (position 64). ILTI was stable over a wide range of temperature and pH and in the presence of DTT.  相似文献   

5.
A. Pusztai 《Planta》1972,107(2):121-129
Summary A number of proteins with trypsin-inhibitory activity was separated by isoelectric focusing and their amounts measured in the extracts of the seeds of kidney bean at various stages of germination up to 16 days.The total trypsin inhibitor content of the dormant seed, 2.2 mg per g bean rose to about 3.6 mg by the seventh day and declined slowly after the tenth day of germination. The individual trypsin inhibitors however, appeared to change independently of each other and some components disappeared almost completely with the progress of germination. The emergence of an inhibitor not found in the dormant seed was also observed. Some of the inhibitor proteins attained a maximum concentration by the 7–8th day of germination. This coincided with a similar maximum in the general protein and proteolytic enzyme content of the germinating bean seeds. The results obtained suggested that the main function during germination of these protein components might not be related to their trypsin-inhibitory activity.  相似文献   

6.
Two new double-headed protease inhibitors have been isolated from black-eyed peas. The isoinhibitors can be purified to homogeneity with greater than 90% recovery in a four-step procedure by means of sequential affinity chromatography on trypsin-Sepharose and chymotrypsin-Sepharose affinity columns. The isoinhibitors both have molecular weights near 8,000 and both have the same NH1-terminal residue serine. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) has an isoelectric point of 5.1 and inhibits trypsin and chymotrypsin simultaneously. Black-eyed pea trypsin inhibitor (BEPTI) has an isoelectric point of 6.5 and inhibits 2 molecules of trypsin simultaneously. BEPTI binds to chymotrypsin-Sepharose above pH 6 but does not inhibit chymotrypsin in the standard inhibitor assay with 10-3 M substrate. These new inhibitors are distinct from the Ventura inhibitor isolated from Serido black-eyed peas. An endogenous seed protease has been isolated from black-eyed peas by affinity chromatography on soybean inhibitor-carboxymethylcellulose affinity columns. A protease-BEPCI complex has been isolated by ion exchange chromatography. A dual physiological function of inhibition and protection of the seed protease is suggested as a plausible role of seed protease inhibitors.  相似文献   

7.
Low molecular weight squash trypsin inhibitors from Sechium edule seeds   总被引:1,自引:0,他引:1  
Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.  相似文献   

8.
Low molecular mass serine proteinase inhibitors isolated from human articular cartilage, intervertebral disc, meniscus, and costal cartilage were compared chromatographically. Similar charge and size properties were exhibited when these inhibitors were examined by gel permeation and cation exchange chromatography. The individual proteinase inhibitory species separated by these procedures all cross-reacted with a polyclonal antibody raised against the mucous proteinase inhibitors (MPIs) obtained from human bronchial secretions, however the distribution of these MPI-like species varied with the origin of the connective tissue. The major inhibitory species present in human articular cartilage and intervertebral disc were purified to homogeneity using gel filtration, cation exchange, trypsin affinity and high performance reverse phase chromatography. The amino-terminal sequences of the purified cartilage intervertebral disc inhibitors was found to be identical to the published sequence of MPIs isolated from parotid and seminal secretions. These findings indicate that the endogenous small molecular mass cationic serine proteinase inhibitory proteins present in human cartilaginous connective tissues are members of the MPI family of proteinase inhibitors.  相似文献   

9.
A family of protease inhibitors (of which one was shown to be homogeneous and one nearly so by ion-exchange chromatography, gel filtration, disc electrophoresis, and amino-terminal analysis) was obtained from navy beans. Amino acid analysis demonstrated the inhibitors to be similar in composition and size to the Bowman-Birk and other low-molecular-weight inhibitors from plants. Interaction with trypsin was monitored by examining enzyme-inhibitor complex formation and inhibitor modification in acrylamide gels after pH 8 and pH 4 preincubation with varying concentrations of trypsin. Specific inhibiting capacities, determined with seven substrates after preincubation at the above pH values, varied greatly with different substrates and were less after low pH preincubation.  相似文献   

10.
Olczak M  Watorek W 《Phytochemistry》2002,61(6):645-655
Acid phosphatase (AP) and diphosphonucleoside phosphatase/phosphodiesterase (PPD1) were purified from yellow lupin (Lupinus luteus L.) immature green seeds (40 days after blooming), dry seeds (40 days later) and dry seeds stored for 160 days. Both enzymes are known to differ in the type of N-glycosylation: the first has an N-glycosylation pattern typical for a vacuolar protein, while the second enzyme has a pattern typical for an extracellular or membrane-bound protein. N-Glycans were released from each of the enzyme preparations, fluorescence labeled, separated and identified by HPLC (GlycoSep N and GlycoSep H columns). Changes in the level of each N-glycan during seed maturation and dormancy were compared. The results show that N-glycan processing in the case of AP and PPD1-two proteins residing in the same plant organ, but possibly in different compartments-is not synchronized and performed not only in metabolically active maturing seeds, but also in metabolically inactive dormant seeds.  相似文献   

11.
Sword bean (Entada scandens) is a tree climber that belongs to Mimosoideae, a subfamily of Leguminosae. A potent Kunitz type trypsin inhibitor (ESTI) was purified to homogeneity from Entada scandens seeds by sequential ammonium sulfate precipitation, affinity chromatography on trypsin-Sepharose and DEAE-Sephacel ion-exchange chromatography. ESTI is a single polypeptide chain of 19,766 Da. Both native PAGE as well as isoelectric focusing showed a single inhibitor species with a pI of 7.43. MALDI-TOF analysis also confirmed the monomeric nature. The amino-terminal sequence of ESTI reveals significant homology to the Kunitz-type protease inhibitors of legume plants. ESTI is unique in that it contains a single disulfide bridge, and unlike other inhibitors from Mimosoideae species is a single chain polypeptide. ESTI inhibited bovine trypsin with a stoichiometry of 1:1 and the apparent K(i) was 4.9 x 10(-9) M. In vitro assay showed that ESTI inhibited the midgut proteinase of the fifth instar larvae of Rice moth (Corcyra cephalonica) with an IC(50) of 26.4+/-0.01 nM. ESTI exhibits a mixed type competitive inhibition at lower concentration and pure competitive at higher inhibitor concentrations. Phylogenetic analyses depicted a clear divergence of single disulfide containing inhibitors from other tree legume Kunitz inhibitors. The homology of ESTI to Kunitz inhibitors together with the absence of Bowman-Birk type inhibitors in sword bean further supports the theory that there exists an evolutionary relationship between the families of inhibitors found in Leguminosae.  相似文献   

12.
Five protease inhibitors, I--V, in the molecular weight range 7000--8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I--V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibit chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residued of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.  相似文献   

13.
Trypsin [EC 3.4.21.4] modified (reactive site cleaved) Vicia angustifolia proteinase inhibitor was prepared at pH 3 with a catalytic amount of trypsin and purified using columns of Sephadex G-50 and DEAE-Sephadex A-25. The modified inhibitor, which still retained antitryptic activity, lost its activity upon treatment with carboxypeptidase B or citraconic anhydride. End-group analyses revealed that the carboxyl-terminal Arg and the amino-terminal Ser residues were newly exposed end-groups in the modified inhibitor. It takes a much longer incubation time (about 1 h) to exhibit the maximal inhibitory activity against trypsin. Reduction and carboxymethylation of the modified inhibitor produced two fragments on Sephadex G-50 chromatography. The smaller fragment consisted of about 32 amino acid residues and possessed a new carboxyl-terminal Arg residue. The larger fragment consisted of about 80 residues and possessed a Ser residue at its amino-terminus. These results indicate that the small fragment was derived from the amino-terminal portion of the modified inhibitor and the large fragment from the carboxyl-terminal. It is also concluded that an Arg-Ser bond is the reactive site as well as the inhibitory site of the V. angustifolia inhibitor against trypsin. The sequence around the antitryptic site exhibits high degrees of homology with other double-headed inhibitors of legume origin, such as the Bowman-Birk inhibitor, lima beam inhibitor, and the major inhibitor in chick-peas.  相似文献   

14.
Y Hojima  J V Pierce  J J Pisano 《Biochemistry》1982,21(16):3741-3746
A strong inhibitor of human Hageman factor fragment (HFf, beta-factor XIIa) and bovine trypsin was isolated from pumpkin (Cucurbita maxima) seed extracts by acetone fractionation, by chromatography on columns of diethyl-aminoethylcellulose and carboxylmethyl-Sephadex C-25, and by Sephadex G-50 gel filtration. Pumpkin seed Hageman factor inhibitor (PHFI) is unusual in its lack of inhibition of several other serine proteinases tested--human plasma, human urinary, and porcine pancreatic kallikreins, human alpha-thrombin, and bovine alpha-chymotrypsin. Human plasmin and bovine factor Xa are only weakly inhibited. PHFI also inhibits the HFf-dependent activation of plasma prekallikrein and clotting of plasma. Other properties of PHFI are a pI of 8.3, 29 amino acid residues, amino-terminal arginine, carboxyl-terminal glycine, 3 cystine residues, undetectable sulfhydryl groups and carbohydrate, and arginine at the reactive site. The minimum molecular weight of PHFI is 3268 by amino acid analysis. PHFI may be the smallest protein inhibitor of trypsin known.  相似文献   

15.
Eight and five proteinase inhibitors were purified from Erythrina corallodendron and E. cristagalli seeds, respectively, by gel filtration followed by ion exchange chromatography on DEAE-cellulose and DEAE-sepharose. Each inhibitor consists of 161–163 amino acids (Mr 18 000) including four half-cystine residues and resembles the Kunitz-type proteinase inhibitors. The N-terminal amino acid sequence of trypsin inhibitor DE-7 from E. corallodendron seed resembles those of other Erythrina species. For the other inhibitors no free N-terminal amino acid was found. DE-1,-2,-3,-4 and -5 from the seed of E. corallodendron contain potent inhibitors for α-chymotrypsin and they have practically no action on trypsin. From the same seed, inhibitors DE-6, -7 and -8 strongly inhibit trypsin and also inhibit α-chymotrypsin to varying degrees. From the seeds of E. cristagalli, inhibitors DE-1 and -8 inhibit trypsin strongly and DE-2, -3 and -4 are strongly inhibitory for α-chymotrypsin. On summarizing the inhibitor characteristics of the Kunitz-type proteinase inhibitors from the seeds of eight different species of Erythrina, it was obvious that there is a relationship between the alanine content of the inhibitors and their activities. A high alanine content is associated with potent α-chymotrypsin activities and low alanine content with strong trypsin activities.  相似文献   

16.
Trypsin inhibitory activity from the hemolymph of the tobacco hornworm (Manduca sexta) was purified by affinity chromatography on immobilized trypsin and resolved into two fractions with molecular weights of 14,000 (M. sexta hemolymph trypsin inhibitor (HLTI) A) and 8,000 (HLTI B) by molecular sieve chromatography on Sephadex G-75. Electrophoresis of these inhibitors under reducing conditions on polyacrylamide gels gave molecular weight estimates of 8,300 for HLTI A and 9,100 for HLTI B, suggesting that HLTI A is a dimer and HLTI B is a monomer. Isoelectrofocusing on polyacrylamide gels focused HLTI A as a single band with pI 5.7, whereas HLTI B was resolved into two components with pI values of 5.3 and 7.1. Both inhibitors were stable at 100 degrees C and pH 1.0 for at least 30 min. HLTIs A and B inhibited serine proteases such as trypsin, chymotrypsin, and plasmin, but did not inhibit elastase, papain, pepsin, subtilisin BPN', and thermolysin. In fact, subtilisin BPN' completely inactivated both inhibitors. Both inhibitors formed low-dissociation complexes with trypsin in a 1:1 molar ratio. The inhibition constant for trypsin inhibition by HLTI A was estimated to be 1.45 x 10(-8) M. The HLTI A-chymotrypsin complex did not inhibit trypsin; similarly, the HLTI A-trypsin complex did not inhibit chymotrypsin, indicating that HLTI A has a common binding site for both trypsin and chymotrypsin. The amino-terminal amino acid sequences of HLTIs A and B revealed that both these inhibitors are homologous to bovine pancreatic trypsin inhibitor (Kunitz).  相似文献   

17.
Wong RC  Fong WP  Ng TB 《Peptides》2004,25(2):163-169
Five trypsin inhibitors, with N-terminal sequences demonstrating homology to each other and exhibiting a molecular weight of 5100, 4800, 4400, 4100, and 3900, respectively, were isolated from Momordica cochinchinensis seeds with a protocol involving acid extraction, ion exchange chromatography on SP-Sepharose chromatography, and RP-HPLC on a C18 column. Specific inhibitory activity against trypsin was demonstrated by the trypsin isoinhibitors with Ki values ranging from 5.3 x 10(-8) to 1.8 x 10(-6) M. None of the isoinhibitors could be cleaved by trypsin.  相似文献   

18.
Two Bowman-Birk type trypsin inhibitors (CmTI(1) and CmTI(2)) were purified from Cratylia mollis seeds by acetone precipitation, ion exchange, gel filtration and reverse-phase chromatography. CmTI(1) and CmTI(2), with 77 and 78 amino acid residues, respectively, were sequenced in their entirety and show a high structural similarity to Bowman-Birk inhibitors from other Leguminosae. The putative reactive sites of CmTI(1) are a lysine residue at position 22 and a tyrosine residue at position 49. Different reactive sites, as identified by their alignment with related inhibitors, were found for CmTI(2): lysine at position 22 and leucine at position 49. The dissociation constant K(i) of the complex with trypsin is 1.4 nM. The apparent molecular mass is 17 kDa without DDT and 11 kDa with reducing agent and heating.  相似文献   

19.
A trypsin inhibitor (PDTI) was isolated from Peltophorum dubium seeds by affinity chromatography on a thyroglobulin-agarose or a trypsin-agarose column. In both cases, SDS-PAGE showed two bands of M(r) 20,000 and 22,000, which could not be resolved. Their amino-terminal sequences were identical and similar to that of Kunitz-type soybean trypsin inhibitor (SBTI). Mass spectrometry analysis of tryptic digests of both bands showed 16 coincident peaks, suggesting that they are closely related proteins. The K(i)s for trypsin and chymotrypsin inhibitory activity of PDTI were 1.6 x 10(-7) and 1.3 x 10(-5)M, respectively. Lectin-like activity of PDTI and SBTI, detected by hemagglutination of rabbit erythrocytes, was inhibited by sialic acid-containing compounds. PDTI and SBTI caused apoptosis of Nb2 rat lymphoma cells, demonstrated by decrease of viability, DNA hypodiploidy, DNA fragmentation, and caspase-3-like activity. They had no effect on normal mouse splenocytes or lymphocytes, whereas they caused apoptosis of concanavalin A-stimulated mouse lymphocytes.  相似文献   

20.
Two crude fractions of acid-resistant trypsin inhibitors (apparent molecular masses 44 and 20 kDa, respectively) were prepared from human urine by gel permeation chromatography. From both preparations the pure inhibitors were isolated by high performance liquid chromatography (HPLC). Their N-terminal amino-acid sequences were determined and compared with those of HI-30 and HI-14 as isolated by reversible binding to either immobilized trypsin or immobilized chymotrypsin. The N-terminal amino-acid sequence of the high-molecular mass inhibitor UI-I isolated by HPLC was identical with those of HI-30 and UI-C-I isolated via immobilized trypsin or chymotrypsin, respectively. The low-molecular mass inhibitors UI-II and UI-C-II differ from HI-14 by the N-terminal extension Glu-Val-Thr-Lys-when obtained by HPLC or by the extension Thr-Lys-when obtained via immobilized chymotrypsin, respectively. The comparison of these N-termini with the amino-acid sequence of HI-30 (Ala1-...-Val16-Thr-Glu-Val-Thr-Lys-HI-14) defines the low molecular urinary trypsin inhibitors as proteolytic degradation products of the high-molecular urinary inhibitor. Proteolysis may occur at different bonds. The existing discrepancies in molecular architecture and in molecular masses of the urinary trypsin inhibitors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号