首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein C inhibitor is a plasma protein whose ability to inhibit activated protein C, thrombin, and other enzymes is stimulated by heparin. These studies were undertaken to further understand how heparin binds to protein C inhibitor and how it accelerates proteinase inhibition. The region of protein C inhibitor from residues 264-283 was identified as the heparin-binding site. This differs from the putative heparin-binding site in the related proteins antithrombin and heparin cofactor. The glycosaminoglycan specificity of protein C inhibitor was relatively broad, including heparin and heparan sulfate, but not dermatan sulfate. Non-sulfated and non-carboxylated polyanions also enhanced proteinase inhibition by protein C inhibitor. Heparin accelerated inhibition of alpha-thrombin, gamma T-thrombin, activated protein C, factor Xa, urokinase, and chymotrypsin, but not plasma kallikrein. The ability of glycosaminoglycans to accelerate proteinase inhibition appeared to depend on the formation of a ternary complex of inhibitor, proteinase, and glycosaminoglycan. The optimum heparin concentration for maximal rate stimulation varied from 10 to 100 micrograms/ml and was related to the apparent affinity of the proteinase for heparin. There was no obvious relationship between heparin affinity and maximum inhibition rate or degree of rate enhancement. The affinity of the resultant protein C inhibitor-proteinase complex was also not related to inhibition rate enhancement, and the results showed that decreased heparin affinity of the complex is not an important part of the catalytic mechanism of heparin. The importance of protein C inhibitor as a regulator of the protein C system may depend on the relatively large increase in heparin-enhanced inhibition rate for activated protein C compared to other proteinases.  相似文献   

2.
Fucoidan, poly(L-fucopyranose) linked primarily alpha 1----2 with either a C3- or a C4-sulfate, is an effective anticoagulant in vitro and in vivo (Springer, G. F., Wurzel, H. A., McNeal, G. M., Jr., Ansell, N. J., and Doughty, M. F. (1957) Proc. Soc. Exp. Biol. Med. 94, 404-409). We have determined the antithrombin effects of fucoidan on the glycosaminoglycan-binding plasma proteinase inhibitors antithrombin III and heparin cofactor II. Fucoidan enhances the heparin cofactor II-thrombin reaction more than 3500-fold. The apparent second-order rate constant of thrombin inhibition by heparin cofactor II increases from 4 x 10(4) (in the absence of fucoidan) to 1.5 x 10(8) M-1 min-1 as the fucoidan concentration increases from 0.1 to 10 micrograms/ml and then decreases as fucoidan is increased above 10 micrograms/ml. The fucoidan reaction with heparin cofactor II-thrombin is kinetically equivalent to a "template model." Apparent fucoidan-heparin cofactor II and fucoidan-thrombin dissociation constants are 370 and 1 nM, respectively. The enhancement of thrombin inhibition by fucoidan, like heparin and dermatan sulfate, is eliminated by selective chemical modification of lysyl residues either of heparin cofactor II or of thrombin. The fucoidan-antithrombin III reactions with thrombin and factor Xa are accelerated maximally 285- and 35-fold at fucoidan concentrations of 30 and 500 micrograms/ml, respectively. Using human plasma and 125I-labeled thrombin in an ex vivo system, the heparin cofactor II-thrombin complex is formed preferentially over the antithrombin III-thrombin complex in the presence of 10 micrograms/ml fucoidan. Our results indicate that heparin cofactor II is activated by fucoidan in vitro and in an ex vivo plasma system and suggest that the major antithrombin activity of fucoidan in vivo is mediated by heparin cofactor II and not by antithrombin III.  相似文献   

3.
Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during the inhibitory process. Protection from inhibition by antithrombin and heparin cofactor II requires ligation of both exosites 1 and 2 because minimal protection is seen when exosite 1 variants (gamma-thrombin and thrombin Quick 1) or an exosite 2 variant (Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala thrombin) is substituted for thrombin. Likewise, the rate of thrombin inhibition by the heparin-independent inhibitor, alpha1-antitrypsin Met358 --> Arg, is decreased less than 2-fold in the presence of soluble fibrin and heparin. In contrast, thrombin is protected from inhibition by a covalent antithrombin-heparin complex, suggesting that access of heparin to exosite 2 of thrombin is hampered when ternary complex formation occurs. These results reveal the importance of exosites 1 and 2 of thrombin in assembly of the ternary complex and the subsequent protection of thrombin from inhibition by heparin-catalyzed inhibitors.  相似文献   

4.
The interactions of two proteinase inhibitors, heparin cofactor II and antithrombin, with thrombin are potentiated by heparin. Using two methods, we have studied the potentiating effects of a series of heparin (poly)saccharides with high affinity for antithrombin and mean Mr ranging from approx. 1700 to 18,800. First, catalytic amounts of heparin (poly)saccharide were added to purified systems containing thrombin and either heparin cofactor II or antithrombin. Residual thrombin activity was determined with a chromogenic substrate. It was found that only the higher-Mr polysaccharides (Mr greater than 8000) efficiently catalysed thrombin inhibition by heparin cofactor II, there being a progressive catalytic effect with increasing Mr of the polysaccharide. Weak accelerating effects were noted with low-Mr saccharides (Mr less than 8000). This contrasted with the well-characterized interaction of heparin with antithrombin and thrombin, where heparin oligosaccharides of Mr less than 5400 had absolutely no ability to accelerate the reaction, while (poly)saccharides of Mr exceeding 5400 showed rapidly increasing catalytic activity with increasing Mr. Secondly, these and other heparin preparations were added in a wide concentration range to plasma with which 125I-labelled thrombin was then incubated for 30 s. Inhibited thrombin was determined from the distribution of labelled thrombin amongst inhibitor-thrombin complexes, predominantly antithrombin-thrombin and heparin cofactor II-thrombin complexes. In this situation, where the inhibitors competed for thrombin and for the (poly)saccharides, it was found that, provided the latter were of high affinity for antithrombin and exceeded a Mr of 5400, thrombin inhibition in plasma was mediated largely through antithrombin. Polysaccharides of Mr exceeding 8000 that were of low affinity for antithrombin accelerated thrombin inhibition in plasma through their interaction with heparin cofactor II. High concentrations of saccharides of Mr 1700-5400 exhibited a size-dependent acceleration of thrombin inhibition, not through their interaction with antithrombin, but through their interaction with heparin cofactor II.  相似文献   

5.
B A Owen  W G Owen 《Biochemistry》1990,29(40):9412-9417
Factor Xa modified by reductive methylation (greater than 92%) loses the capacity to bind heparin as determined both by gel chromatography and by sedimentation equilibrium ultracentrifugation. The kinetic properties of methylated factor Xa differ, with respect to KM and Vmax for a synthetic tripeptide substrate and for antithrombin III inhibition rate constants, from those of the unmodified enzyme. The 10,000-fold rate enhancement elicited by the addition of heparin to the antithrombin III inhibition reaction, however, is the same. The observed second-order rate constants (k"obs) for antithrombin III inhibition of factor Xa and methylated factor Xa are 3000 and 340 M-1 s-1, respectively, whereas k"obs values for the inhibition of factor Xa or methylated factor Xa with antithrombin III-heparin are 4 X 10(7) and 3 X 10(6) M-1 s-1, respectively. These findings provide direct evidence that the interaction of factor Xa with heparin is not involved in the heparin-enhanced inhibition of this enzyme.  相似文献   

6.
Heparin activates the primary serpin inhibitor of blood clotting proteinases, antithrombin, both by an allosteric conformational change mechanism that specifically enhances factor Xa inactivation and by a ternary complex bridging mechanism that promotes the inactivation of thrombin and other target proteinases. To determine whether the factor Xa specificity of allosterically activated antithrombin is encoded in the reactive center loop sequence, we attempted to switch this specificity by mutating the P6-P3' proteinase binding sequence excluding P1-P1' to a more optimal thrombin recognition sequence. Evaluation of 12 such antithrombin variants showed that the thrombin specificity of the serpin allosterically activated by a heparin pentasaccharide could be enhanced as much as 55-fold by changing P3, P2, and P2' residues to a consensus thrombin recognition sequence. However, at most 9-fold of the enhanced thrombin specificity was due to allosteric activation, the remainder being realized without activation. Moreover, thrombin specificity enhancements were attenuated to at most 5-fold with a bridging heparin activator. Surprisingly, none of the reactive center loop mutations greatly affected the factor Xa specificity of the unactivated serpin or the several hundred-fold enhancement in factor Xa specificity due to activation by pentasaccharide or bridging heparins. Together, these results suggest that the specificity of both native and heparin-activated antithrombin for thrombin and factor Xa is only weakly dependent on the P6-P3' residues flanking the primary P1-P1' recognition site in the serpin-reactive center loop and that heparin enhances serpin specificity for both enzymes through secondary interaction sites outside the P6-P3' region, which involve a bridging site on heparin in the case of thrombin and a previously unrecognized exosite on antithrombin in the case of factor Xa.  相似文献   

7.
Although fibrin-bound thrombin is resistant to inactivation by heparin.antithrombin and heparin.heparin cofactor II complexes, indirect studies in plasma systems suggest that the dermatan sulfate.heparin cofactor II complex can inhibit fibrin-bound thrombin. Herein we demonstrate that fibrin monomer produces a 240-fold decrease in the heparin-catalyzed rate of thrombin inhibition by heparin cofactor II but reduces the dermatan sulfate-catalyzed rate only 3-fold. The protection of fibrin-bound thrombin from inhibition by heparin.heparin cofactor II reflects heparin-mediated bridging of thrombin to fibrin that results in the formation of a ternary heparin.thrombin.fibrin complex. This complex, formed as a result of three binary interactions (thrombin.fibrin, thrombin.heparin, and heparin.fibrin), limits accessibility of heparin-catalyzed inhibitors to thrombin and induces conformational changes at the active site of the enzyme. In contrast, dermatan sulfate binds to thrombin but does not bind to fibrin. Although a ternary dermatan sulfate. thrombin.fibrin complex forms, without dermatan sulfate-mediated bridging of thrombin to fibrin, only two binary interactions exist (thrombin.fibrin and thrombin. dermatan sulfate). Consequently, thrombin remains susceptible to inactivation by heparin cofactor II. This study explains why fibrin-bound thrombin is susceptible to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin.  相似文献   

8.
Arocas V  Turk B  Bock SC  Olson ST  Björk I 《Biochemistry》2000,39(29):8512-8518
The interaction of a well-defined pentasaccharide sequence of heparin with a specific binding site on antithrombin activates the inhibitor through a conformational change. This change increases the rate of antithrombin inhibition of factor Xa, whereas acceleration of thrombin inhibition requires binding of both inhibitor and proteinase to the same heparin chain. An extended heparin binding site of antithrombin outside the specific pentasaccharide site has been proposed to account for the higher affinity of the inhibitor for full-length heparin chains by interacting with saccharides adjacent to the pentasaccharide sequence. To resolve conflicting evidence regarding the roles of Lys136 and Lys139 in this extended site, we have mutated the two residues to Ala or Gln. Mutation of Lys136 decreased the antithrombin affinity for full-length heparin by at least 5-fold but minimally altered the affinity for the pentasaccharide. As a result, the full-length heparin and pentasaccharide affinities were comparable. The reduced affinity for full-length heparin was associated with the loss of one ionic interaction and was caused by both a lower overall association rate constant and a higher overall dissociation rate constant. In contrast, mutation of Lys139 affected neither full-length heparin nor pentasaccharide affinity. The rate constants for inhibition of thrombin and factor Xa by the complexes between antithrombin and full-length heparin or pentasaccharide were unaffected by both mutations, indicating that neither Lys136 nor Lys139 is involved in heparin activation of the inhibitor. Together, these results show that Lys136 forms part of the extended heparin binding site of antithrombin that participates in the binding of full-length heparin chains, whereas Lys139 is located outside this site.  相似文献   

9.
Heparin is thought to regulate the rate of mammalian blood clotting by enhancing the activity of antithrombin, an inhibitor of coagulation enzymes. The present study establishes that this same inhibitor is present in the blood plasma of each of the terrestrial vertebrate groups including mammals, birds, reptiles, and amphibians. In each case, an inhibitor with remarkably similar properties to human antithrombin was isolated by affinity chromatography on immobilized porcine heparin. The purified vertebrate inhibitors all show the following physical and functional homologies to human antithrombin: (i) heparin-enhanced inhibition of both bovine thrombin and human Factor Xa, (ii) molecular masses of approximately 60,000, and (iii) heparin-induced increases in ultraviolet fluorescence. Also, the heparin-binding interaction of vertebrate antithrombins is highly selective with each demonstrating the same rigid specificity for heparin species fractionated on the basis of their affinity for human antithrombin. This common ability of vertebrate antithrombins to discriminate among heparins is accomplished by a nearly unvarying equilibrium binding constant for the high-affinity heparin species. Thus, the present results suggest that the anticoagulant relationship of heparin and antithrombin was established at an early point in the evolution of the coagulation system and has been highly conserved since that time.  相似文献   

10.
The synthetic antithrombin-binding heparin pentasaccharide and a full-length heparin of approximately 26 saccharides containing this specific sequence have been compared with respect to their interactions with antithrombin and their ability to promote inhibition and substrate reactions of antithrombin with thrombin and factor Xa. The aim of these studies was to elucidate the pentasaccharide contribution to heparin's accelerating effect on antithrombin-proteinase reactions. Pentasaccharide and full-length heparins bound antithrombin with comparable high affinities (KD values of 36 +/- 11 and 10 +/- 3 nM, respectively, at I 0.15) and induced highly similar protein fluorescence, ultraviolet and circular dichroism changes in the inhibitor. Stopped-flow fluorescence kinetic studies of the heparin binding interactions at I 0.15 were consistent with a two-step binding process for both heparins, involving an initial weak encounter complex interaction formed with similar affinities (KD 20-30 microM), followed by an inhibitor conformational change with indistinguishable forward rate constants of 520-700 s-1 but dissimilar reverse rate constants of approximately 1 s-1 for the pentasaccharide and approximately 0.2 s-1 for the full-length heparin. Second order rate constants for antithrombin reactions with thrombin and factor Xa were maximally enhanced by the pentasaccharide only 1.7-fold for thrombin, but a substantial 270-fold for factor Xa, in an ionic strength-independent manner at saturating oligosaccharide. In contrast, the full-length heparin produced large ionic strength-dependent enhancements in second order rate constants for both antithrombin reactions of 4,300-fold for thrombin and 580-fold for factor Xa at I 0.15. These enhancements were resolvable into a nonionic component ascribable to the pentasaccharide and an ionic component responsible for the additional rate increase of the larger heparin. Stoichiometric titrations of thrombin and factor Xa inactivation by antithrombin, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of these reactions, indicated that pentasaccharide and full-length heparins similarly promoted the formation of proteolytically modified inhibitor during the inactivation of factor Xa by antithrombin, whereas only the full-length heparin was effective in promoting this substrate reaction of antithrombin during the reaction with thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We have previously shown that exosites in antithrombin outside the P6-P3' reactive loop region become available upon heparin activation to promote rapid inhibition of the target proteases, factor Xa and factor IXa. To identify these exosites, we prepared six antithrombin-alpha 1-proteinase inhibitor chimeras in which antithrombin residues 224-286 and 310-322 that circumscribe a region surrounding the reactive loop on the inhibitor surface were replaced in 10-16-residue segments with the homologous segments of alpha1-proteinase inhibitor. All chimeras bound heparin with a high affinity similar to wild-type, underwent heparin-induced fluorescence changes indicative of normal conformational activation, and were able to form SDS-stable complexes with thrombin, factor Xa, and factor IXa and inhibit these proteases with stoichiometries minimally altered from those of wild-type antithrombin. With only one exception, conformational activation of the chimeras with a heparin pentasaccharide resulted in normal approximately 100-300-fold enhancements in reactivity with factor Xa and factor IXa. The exception was the chimera in which residues 246-258 were replaced, corresponding to strand 3 of beta-sheet C, which showed little or no enhancement of its reactivity with these proteases following pentasaccharide activation. By contrast, all chimeras including the strand 3C chimera showed essentially wild-type reactivities with thrombin after pentasaccharide activation as well as normal full-length heparin enhancements in reactivity with all proteases due to heparin bridging. These findings suggest that antithrombin exosites responsible for enhancing the rates of factor Xa and factor IXa inhibition in the conformationally activated inhibitor lie in strand 3 of beta-sheet C of the serpin.  相似文献   

12.
To elucidate the role of the COOH-terminal region of antithrombin III, we studied the effects of synthetic peptides corresponding to its sequence on the amidolytic and proteolytic activities of thrombin and Factor Xa in the presence or absence of the inhibitor, antithrombin III. The peptides ANRPFLVFI and IIFMGRVANP corresponding to residues Ala404 to Ile412 and Ile420 to Pro429, respectively, blocked the inhibition by antithrombin III. The effect of IIFMGRVANP was reduced in the presence of heparin. Both peptides at a concentration of 1 mM blocked complex formation between antithrombin III and thrombin or Factor Xa. The two peptides, particularly IIFMGRVANP, directly enhanced the amidolytic activity of thrombin and Factor Xa on the synthetic substrate Boc-Ala-Gly-Arg-MCA (where Boc is t-butoxycarbonyl and MCA is 4-methylcoumarin), which corresponds to residues P3-P1 of the reactive site of antithrombin III, and also on other substrates due to increased Vmax. IIFMGRVANP also shortened the thrombin-induced fibrinogen clotting time, whereas ANRPFLVFI inhibited the thrombin-catalyzed activation of protein C both in the presence and absence of thrombomodulin. The direct effect of ANRPFLVFI and IIFMGRVANP on thrombin was confirmed by enhancement of the incorporation of dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide into thrombin. These findings suggest that the COOH-terminal region of antithrombin III interacts with thrombin and Factor Xa to increase the reactivity of the enzyme, which may enhance acyl-bond formation between the inhibitor and the enzyme.  相似文献   

13.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

14.
Pereira MS  Melo FR  Mourão PA 《Glycobiology》2002,12(10):573-580
We attempted to identify the specific structural features in sulfated galactans and sulfated fucans that confer anticoagulant activity. For this study we employed a variety of invertebrate polysaccharides with simple structures composed of well-defined units of oligosaccharides. Our results indicate that a 2-O-sulfated, 3-linked alpha-L-galactan, but not a alpha-L-fucan with a similar molecular size, is a potent thrombin inhibitor mediated by antithrombin or heparin cofactor II. The difference between the activities of these two polysaccharides is not very pronounced when factor Xa replaced thrombin. The occurrence of 2,4-di-O-sulfated units is an amplifying motif for 3-linked alpha-fucan-enhanced thrombin inhibition by antithrombin. If we replace antithrombin by heparin cofactor II, then the major structural requirement for the activity becomes single 4-O-sulfated fucose units. The presence of 2-O-sulfated fucose residues always had a deleterious effect on anticoagulant activity. Overall, our results indicate that the structural requirements for interaction of sulfated galactans and sulfated fucans with coagulation cofactors and their target proteases are stereospecific and not merely a consequence of their charge density and sulfate content.  相似文献   

15.
Two sulfated polysaccharides WF1 and WF3 were isolated from marine green algae Monostroma nitidum, and their structural characteristics were determined. Anticoagulant activities of WF1 and WF3 were evaluated by assays of the activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), antithrombin and anticoagulation factor Xa activities. The results showed that WF1 and WF3 had similar high contents of rhamnose, whereas their sulfate contents, sulfation positions, molecular sizes and linkage patterns of rhamnose residues were different. The bioassay results demonstrated that WF1 and WF3 had high anticoagulant activities, and were potent thrombin inhibitors mediated by heparin cofactor II, especially WF3. They also hastened thrombin and coagulation factor Xa inhibition by potentiating antithrombin III, but at a lower effectiveness. The differences of anticoagulant activities between WF1 and WF3 were directly due to their structural features discrepancy.  相似文献   

16.
To probe the functional role of tryptophan 49 in human antithrombin III, a mutant antithrombin, W49K, has been expressed in baby hamster kidney cells. The mutation reduces the affinity for heparin pentasaccharide by 1.8 kcal mol-1 but does not alter the heparin enhancement of the rate of factor Xa inhibition. 1H NMR spectra of W49K antithrombin show that the structure of the protein and the mode of heparin binding appear to be unaltered by the mutation, although tryptophan 49 is perturbed by heparin binding. 19F NMR spectra of 6-fluorotryptophan-substituted antithrombin show that tryptophan 49 is in a solvent-exposed environment. The heparin-induced fluorescence enhancement of W49K antithrombin is significantly different from that of wild-type antithrombin. Pentasaccharide induces only a 24% enhancement of antithrombin fluorescence, while high affinity heparin induces an enhancement of 40%. The results indicate that tryptophan 49 is probably a heparin contact residue but can be mutated without altering the remaining heparin-antithrombin interactions or the heparin-induced conformational change and resultant activation toward Factor Xa. Hydrophobic as well as charge interactions are thus probably involved in the specificity of the antithrombin-heparin pentasaccharide interaction. The lower fluorescence enhancements suggest that the heparin-induced 40% fluorescence enhancement used as the hallmark of activating heparin species is not the best indicator of the structural change in antithrombin that results in enhancement of the rate of proteinase inhibition.  相似文献   

17.
Heparin regulates the inhibitory activity of antithrombin. It has been proposed that residues P15 and P14 are expelled from beta-sheet A of antithrombin by heparin binding, permitting better interaction of the reactive center loop with factor Xa. We have made a P14 antithrombin variant (S380E) to create an activated inhibitory form of antithrombin in which P14 is already expelled from beta-sheet A. S380E antithrombin fluorescence is enhanced 35 +/- 5% compared with control antithrombin. There is minimal further increase in antithrombin fluorescence upon heparin binding. The variant has a 5 degrees C lower T(m) than control antithrombin. The variant is an inhibitor of proteinases and has a nearly 200-fold increased basal rate of inhibition of factor Xa, after correction for an increased stoichiometry of inhibition. This is comparable to that of antithrombin activated by high affinity heparin pentasaccharide. Full-length high affinity heparin causes only a 7-fold additional increase in rate and a large increase in stoichiometry of inhibition. In contrast, the basal rate of inhibition of thrombin is similar to that of control antithrombin but is increased 300-fold by heparin. These findings suggest that the native state of the S380E variant exists in a loop-expelled conformation that is consequently highly reactive toward factor Xa.  相似文献   

18.
Heparin cofactor II (Mr = 65,600) was purified 1800-fold from human plasma to further characterize the structural and functional properties of the protein as they compare to antithrombin III (Mr = 56,600). Heparin cofactor II and antithrombin III are functionally similar in that both proteins have been shown to inhibit thrombin at accelerated rates in the presence of heparin. There was little evidence for structural homology between heparin cofactor II and antithrombin III when high performance liquid chromatography-tryptic peptide maps and NH2-terminal sequences were compared. A partially degraded form of heparin cofactor II was also obtained in which a significant portion (Mr = 8,000) of the NH2 terminus was missing. The rates of thrombin inhibition (+/- heparin) by native and partially degraded-heparin cofactor II were not significantly different, suggesting that the NH2-terminal region of the protein is not essential either for heparin binding or for thrombin inhibition. A significant degree of similarity was found in the COOH-terminal regions of the proteins when the primary structures of the reactive site peptides, i.e. the peptides which are COOH-terminal to the reactive site peptide bonds cleaved by thrombin, were compared. Of the 36 residues identified, 19 residues in the reactive site peptide sequence of heparin cofactor II could be aligned with residues in the reactive site peptide from antithrombin III. While the similarities in primary structure suggest that heparin cofactor II may be an additional member of the superfamily of proteins consisting of antithrombin III, alpha 1-antitrypsin, alpha 1-antichymotrypsin and ovalbumin, the differences in structure could account for differences in protease specificity and reactivity toward thrombin. In particular, a disulfide bond which links the COOH-terminal (reactive site) region of antithrombin III to the remainder of the molecule and is important for the heparin-induced conformational change in the protein and high affinity binding of heparin does not appear to exist in heparin cofactor II. This observation provides an initial indication that while the reported kinetic mechanisms of action of heparin in accelerating the heparin cofactor II/thrombin and antithrombin III/thrombin reactions are similar, the mechanisms and effects of heparin binding to the two inhibitors may be different.  相似文献   

19.
Evidence for essential lysines in heparin cofactor II   总被引:1,自引:0,他引:1  
Covalent modification with pyridoxal 5'-phosphate was used to study the function of lysyl residues in heparin cofactor II, a heparin-dependent plasma protease inhibitor. Reduction of the Schiff base with sodium borohydride resulted in modification of 3-4 lysyl residues of heparin cofactor II at high concentrations of pyridoxal 5'-phosphate, one of which was protected in the presence of heparin. The antithrombin activity of modified heparin cofactor II was enhanced compared to the native protein. However, the heparin cofactor activity for thrombin inhibition was reduced significantly or completely eliminated in the modified protease inhibitor depending on the extent of phosphopyridoxylation. In contrast to native heparin cofactor II, the modified protease inhibitor did not bind to a heparin-agarose column. The results suggest that lysyl residues are essential for heparin cofactor activity during thrombin inhibition.  相似文献   

20.
Blood clotting proceeds through the sequential proteolytic activation of a series of serine proteases, culminating in thrombin cleaving fibrinogen into fibrin. The serine protease inhibitors (serpins) antithrombin (AT) and protein C inhibitor (PCI) both inhibit thrombin in a heparin-accelerated reaction. Heparin binds to the positively charged D-helix of AT and H-helix of PCI. The H-helix of AT is negatively charged, and it was mutated to contain neutral or positively charged residues to see if they contributed to heparin stimulation or protease specificity in AT. To assess the impact of the H-helix mutations on heparin stimulation in the absence of the known heparin-binding site, negative charges were also introduced in the D-helix of AT. AT with both positively charged H- and D-helices showed decreases in heparin stimulation of thrombin and factor Xa inhibition by 10- and 5-fold respectively, a decrease in affinity for heparin sepharose, and a shift in the heparin template curve. In the absence of a positively charged D-helix, changing the H-helix from neutral to positively charged increased heparin stimulation of thrombin inhibition 21-fold, increased heparin affinity and restored a normal maximal heparin concentration for inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号