首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single anion channels reconstituted from cardiac mitoplasts   总被引:4,自引:0,他引:4  
Ion channels from sheep cardiac mitoplast (inverted inner mitochondrial membrane vesicle) preparations were incorporated into voltage-clamped planar lipid bilayers. The appearance of anion rather than cation channels could be promoted by exposing the bilayers to osmotic gradients formed by Cl salts of large, relatively imperment, cations at a pH of 8.8. Two distinct activities were identified. These comprised a multisubstate anion channel of intermediate conductance (∼60 pS in 300vs. 50mm choline Cl, ∼100 pS in symmetric 150mm KCl), and a lower-conductance anion channel (∼25 or ∼50 pS in similar conditions), which only displayed two well-defined substates, at ∼25 and ∼50% of the fully open state. The larger channels were not simple multiples of the lower-conductance channels, but both discriminated poorly, and to a similar extent, between anions and cations (PCl /Pcholine + ∼12, PCl /PK +∼8). The lower-conductance channel was only minimally selective between different anions (PNO 3 (1.0)=PCl >PBr >PI >PSCN (0.8)), and its conductance failed to saturate even in high (>1.0 M) activities of KCl. The channels were not obviously voltage dependent, and they were unaffected by 0.5 mM SITS, H2O2, propranolol, quinine or amitriptyline, or by 2 mM ATP, or by variations in pH (5.5–8.8). Ca2+ and Mg2+ did not alter single channel activity, but did modify single current amplitudes in the lower-conductance channel. This effect, together with voltage-dependent substate behavior, is described in the following paper.  相似文献   

2.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

3.
A kinetic analysis of the photosynthesis inhibition by buffers allowed quantification of some components of the carbon concentrating mechanism (CCM) of the brown macroalga Laminaria saccharina. The CCM was based on the presence of acid regions outside the plasma membrane that increased the CO2 concentration available for photosynthesis by 10–20 times above that of the bulk medium at alkaline pH. Furthermore, the results suggested that the CCM is located mainly on the cell membrane and not in the chloroplast, as suggested for most macroalgae. The degree of dissipation of the acid regions by a buffer was related to the buffer anion concentration (B), estimated from the titration of the buffer from bulk medium pH to a pH endpoint value close to the first pK a of the carbonic acid system. A kinetic model describing the relationship between inhibition of photosynthesis by a buffer and B was developed suggesting that buffers act as competitive inhibitors with IC50 (the concentration of the buffer anion which reduces the reaction velocity by half) of 5.0 mol m−3. This model can be used to estimate the inhibitory effect of any buffer on the photosynthesis of L. saccharina. Nevertheless, some buffers tested showed a lower effect than that predicted from the hyperbolic model suggesting that their strength as inhibitors depended on: (1) the pK a in relation to the first pK a of the carbonic acid system and (2) its molecular weight (i.e. its mobility).  相似文献   

4.
Summary A transport model for translocation of the protonophore CCCP across the red cell membrane has been established and cellular CCCP binding parameters have been determined. The time course of the CCCP redistribution across the red cell membrane, following a jump in membrane potential induced by valinomycin addition, has been characterized by fitting values of preequilibrium extracellular pHvs. time to the transport model. It is demonstrated, that even in the presence of valinomycin, the CCCP-anion is well behaved, in that the translocation can be described by simple electrodiffusion. The translocation kinetics conform to an Eyring transport model, with a single activation energy barrier, contrary to translocation across lipid bilayers, that is reported to follow a transport model with a plateau in the activation energy barrier. The CCCP anion permeability across the red cell membrane has been calculated to be close to 2.0×10–4 cm/sec at 37°C with small variations between donors. Thus the permeability of CCCP in the human red cell membrane deviates from that found in black lipid membranes, in which the permeability is found to be a factor of 10 higher.  相似文献   

5.
Since the major mechanisms responsible for regulation of intracellular pH of enterocytes are located in the basolateral membrane, respective effects may be expected on pH in the compartment near the basolateral membrane. A method was established to estimate the pH at the basolateral membrane (pH b ) of isolated caecal epithelia of guinea pig using pH-sensitive fluorescein attached to lectin (lens culinaris). In the presence of bicarbonate and a perfusion solution-pH of 7.4, pH b was 7.70 ± 0.15. In the absence of bicarbonate or chloride as well as by inhibition of the basolateral Cl-HCO 3 exchange with H2-DIDS, pH b was reduced near to solution-pH. Inhibition of the basolateral Na+-H+ exchanger by adding a sodium- and bicarbonate-free, low-buffered solution increased pH b . Decrease of pH of serosal perfusion solution to 6.4 provoked a similar decrease of pH b to solution pH. Short-chain fatty acids (SCFA) added to the mucosal solution caused a slight decrease of pH b . SCFA added to the serosal side alkalized pH b . However, in the presence of bicarbonate pH b returned quickly to the initial pH b , and after removal of SCFA a transient acidification of pH b was seen. These responses could not be inhibited by MIA or H2-DIDS. We conclude that no constant pH-microclimate exists at the basolateral side. The regulation of the intracellular pH of enterocytes reflects pH b . The slightly alkaline pH b is due to the bicarbonate efflux. Data support the presence of an SCFA-HCO 3 exchange. Received: 17 December 1998/Revised: 24 February 1999  相似文献   

6.
In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles. Here we report the use of acridine orange to quantify passive proton fluxes. Right-side out vesicles were exposed to pH jumps. From the decay of the applied ΔpH the proton fluxes and proton permeability coefficients (PH+) were calculated. As in the intact Elodea plasma membrane, the proton permeability of the vesicle membrane is pH sensitive, an effect of internal pH as well as external pH on PH+ was observed. Under near symmetric conditions, i.e., zero electrical potential and zero ΔpH, PH+ increased from 65 × 10−8 at pH 8.5 to 10−1 m/sec at pH 11 and the conductance from 13 × 10−6 to 30 × 10−4 S/m2. At a constant pH i of 8 and a pH o going from 8.5 to 11, PH+ increased more than tenfold from 2 to 26 × 10−6 m/sec. The calculated values of PH+ were several orders of magnitude lower than those obtained from studies on intact leaves. Apparently, in plasma membrane purified vesicles the transport system responsible for the observed high proton permeability in vivo is either (partly) inactive or lost during the procedure of vesicle preparation. The residue proton permeability is in agreement with values found for liposome or planar lipid bilayer membranes, suggesting that it reflects an intrinsic permeability of the phospholipid bilayer to protons. Possible implications of these findings for transport studies on similar vesicle systems are discussed. Received: 5 April 1995/Revised: 28 March 1996  相似文献   

7.
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO 3 challenge and to quantify transport activity. The NO 3-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO 3-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 μm NO 3. In the latter, induction showed a latency of 40–80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO 3; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO 3 additions which, after induction, resulted in reversible membrane depolarizations of (+)54–85 mV in the presence of 50 μm NO 3; and it was suppressed when NH4 + was present during the first, inductive exposure to NO 3. Voltage clamp measurements carried out immediately before and following NO 3 additions showed that the NO 3-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (−400 to +100 mV). Measurements of NO 3 uptake using NO 3-selective macroelectrodes indicated a charge stoichiometry for NO 3 transport of 1(+):1(NO 3) with common K m and J max values around 25 μm and 75 pmol NO 3 cm−2sec−1, respectively, and combined measurements of pH o and [NO 3] o showed a net uptake of approx. 1 H+ with each NO 3 anion. Analysis of the NO 3 current demonstrated a pronounced voltage sensitivity within the normal physiological range between −300 and −100 mV as well as interactions between the kinetic parameters of membrane voltage, pH o and [NO 3] o . Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pH o of 6.1, driving the membrane voltage from −350 to −150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO 3. By contrast, the same depolarization effected an approx. 20% fall in the K m for transport as a function in [H+] o . These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO 3 anion transported across the membrane, and implicate a carrier cycle in which NO 3 binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO 3 transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO 3 transport; finally, they distinguish metabolite repression of NO 3 transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate. Received: 17 March 1997/Revised: 20 June 1997  相似文献   

8.
Massonneau A  Martinoia E  Dietz KJ  Mimura T 《Planta》2000,211(3):390-395
 Transport of inorganic orthophosphate (Pi) across the tonoplast membrane was studied using intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus. Orthophosphate uptake was strongly stimulated in the presence of Mg-ATP and Mg-pyrophosphate and inhibited by bafilomycin and concanamycin which are potent inhibitors of the vacuolar H+-ATPase. These results indicated that the build-up of an electrochemical gradient by the H+ pumps was essential for the uptake of Pi. Potassium thiocyanate, which dissipates the membrane potential across the tonoplast, strongly inhibited the Mg-ATP-stimulated uptake of Pi, while only a weak inhibition was observed in the presence of NH4Cl, which dissipates the pH gradient. These results indicate that, as observed for other anions like malate or chloride, the electrical component is the driving force of Pi uptake, whereas the ΔpH plays only a minor role. Possible competitive inhibitors of Pi, MoO2− 4, VO3− 4 and CrO2− 4 were tested. Among them, CrO2− 4 strongly inhibited Pi uptake into the vacuoles. Various inhibitors of anion transport were also tested. Only 4,4-diisothiocyanostilbene-2,2′-disulfonic acid strongly inhibited Pi uptake into the vacuoles. The function of the vacuolar Pi transporters for cytoplasmic Pi homeostasis is discussed. Received: 20 September 1999 / Accepted: 28 January 2000  相似文献   

9.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

10.
Summary Bilayer membranes were formed from decane, cholesterol, and three lipids isolated fromStaphylococcus aureus: positively charged lysyl phosphatidylglycerol (LysPG), negatively charged phosphatidylglycerol (PG), and neutral diglucosyldiglyceride (DiGluDiGly). The uncouplers of oxidative phosphorylation, 2,4-dinitrophenol (DNP) and 3-t-butyl,5-chloro,2-chloro,4-nitrosalicylanilide (S 13), increased the electrical conductance of all three differently charged bilayers. S 13 was found to be the most effective reagent of the known uncouplers in increasing conductance of the bilayers. The conductance induced by uncouplers was investigated as a function of pH and uncoupler concentration. The pH of maximum conductance for each uncoupling agent was dependent on both the uncoupler and the lipid; it was lower for each uncoupler in LysPG and higher in PG compared to DiGluDiGly bilayers. At a pH below the optimum for LysPG, the conductance of the positively charged membrane was 500 times and of the neutral one 10 times higher than that of the negatively charged bilayer at equal uncoupler concentration and pH. Above the pH optimum for DiGluDiGly, the conductance was approximately equal for the positive and neutral membranes, but was lower in PG bilayers. Conductance depended linearly on uncoupler concentration. The bilayer conductance induced by S 13 was entirely due to increased proton permeability in all three lipids. The findings are consistent with the role of uncouplers as carriers for protons across the hydrocarbon interior of lipid membranes. The differences in conductance of differently charged lipid bilayers at equal uncoupler concentration, as well as the change of pH optimum of conductance with lipid charge, can be explained in terms of an electrostatic energy contribution of the fixed lipid charges to the distribution of the uncoupler anion between the aqueous and the membrane phases.  相似文献   

11.
Under the conditions of low-amplitude mitochondrial swelling, the oxidative phosphorylation system functions in a local coupling mode postulated by Williams in 1961. The proton pumps activation leads to the formation of non-equilibrium membrane bounded proton fraction (nef-H+), which is sorbed on the outer side of the inner mitochondrial membrane under these conditions. This proton fraction is crucial for the ATP synthesis. The present work is devoted to the development of the methods allowing investigations of the properties of nef-H+. For this purpose, a new membranotropic highly hydrophobic uncoupler 2,4,6-trichloro-3-pentadecylphenol was synthesized. In accordance with our results, it can be referred to as a new type of transmemebrane proton carriers, which interact specifically only with nef-H+ outer side of the inner membrane. A new method of the nef-H+ removal from the outer side of the inner mitochondrial membrane under the conditions when the proton pumps are active has been developed. The method is based on neutralization of nef-H+ by hydroxyl anions transferred by H2PO4/OH-antiporter to interfacial border. It was demonstrated that the membrane proton fraction is heterogeneous. Two components of the fraction were identified. And at the same time, it was shown that nucleotide translocator participates in the formation of one component. Also, in this series of experiments it was found that a well-known effect of respiration inhibition by high concentrations of uncoupler under certain conditions can be completely explained by the nef-H+ formation. We presume that one of the most important results of the studies carried out is a new independent evidence of the existence of nef-H+, which is formed under the conditions of proton pump activation.  相似文献   

12.
Available data indicate that superoxide anion (O2•− ) is released from mitochondria, but apart from VDAC (voltage dependent anion channel), the proteins involved in its transport across the mitochondrial outer membrane still remain elusive. Using mitochondria of the yeast Saccharomyces cerevisiae mutant depleted of VDAC (Δpor1 mutant) and the isogenic wild type, we studied the role of the TOM complex (translocase of the outer membrane) in the efflux of O2•− from the mitochondria. We found that blocking the TOM complex with the fusion protein pb2-DHFR decreased O2•− release, particularly in the case of Δpor1 mitochondria. We also observed that the effect of the TOM complex blockage on O2•− release from mitochondria coincided with the levels of O2•− release as well as with levels of Tom40 expression in the mitochondria. Thus, we conclude that the TOM complex participates in O2•− release from mitochondria.  相似文献   

13.
The SLC26 gene family encodes anion transporters with diverse functional attributes: (a) anion exchanger, (b) anion sensor, and (c) anion conductance (likely channel). We have cloned and studied Slc26a9, a paralogue expressed mostly in lung and stomach. Immunohistochemistry shows that Slc26a9 is present at apical and intracellular membranes of lung and stomach epithelia. Using expression in Xenopus laevis oocytes and ion-sensitive microelectrodes, we discovered that Slc26a9 has a novel function not found in any other Slc26 proteins: cation coupling. Intracellular pH and voltage measurements show that Slc26a9 is a nCl-HCO3 exchanger, suggesting roles in gastric HCl secretion or pulmonary HCO3 secretion; Na+ electrodes and uptakes reveal that Slc26a9 has a cation dependence. Single-channel measurements indicate that Slc26a9 displays discrete open and closed states. These experiments show that Slc26a9 has three discrete physiological modes: nCl-HCO3 exchanger, Cl channel, and Na+-anion cotransporter. Thus, the Slc26a9 transporter channel is uniquely suited for dynamic and tissue-specific physiology or regulation in epithelial tissues. Min-Hwang Chang, Consuelo Plata, and Kambiz Zandi-Nejad have contributed equally to this work.  相似文献   

14.
Effects of nitrate,(NO3) chloride (Cl), sulfate (SO42-, and acetate (Ac) on Cu2+ adsorption and affinity of the adsorbed Cu2+ were evaluated in two Fe and Al enriched variable charge soils from Southern China. The maximum adsorption of Cu2+ (M, a parameter from the Langmuir isotherm model) in the presence of different anions decreased in the order Cl > Ac > NO3 > SO42- for both soils. The clayey loamy soil (mixed siliceous thermic Typic Dystrochrept, TTD), developed on the Arenaceous rock, adsorbed less Cu2+ than the clayey soil (kaolinitic thermic Plinthudults, KTP), derived from the Quaternary red earths, regardless of anion type present in the medium. The affinity of adsorbed Cu2+ to both soils could be characterized by the Kd (distribution coefficient) values and successive extraction of the adsorbed Cu2+ with 1-mol NH4Ac L−1. The log10Kd value was smaller for the TTD soil than for the KTP soil and decreased in the order of Cl > NO3 > SO42- > Ac at low initial Cu2+ concentrations (≤40 mg Cu2+L−1), whereas at 80 mg Cu2+L−1, the log10Kd value was similar for NO3, SO42-, and Ac, but was slightly higher for Cl. Complete extraction of Cu2+ adsorbed in the presence of Ac was achieved. Influence of NO3 and SO42- on the affinity of adsorbed Cu2+ was similar, but the effects of Cl depended on the initial Cu2+ concentrations. The extracted percentage of the adsorbed Cu2+ in the presence of NO3 or SO42- increased with increasing Cu2+ adsorption saturation. The presence of Cl, NO3, or SO42- markedly decreased the equilibrium solution pH for both soils with increasing initial Cu2+ concentrations, and the delta pH values at the highest Cu2+ level were 0.5, 0.63, and 0.55 U for the TTD soil and 0.79, 0.84, and 0.93 U for the KTP soil, respectively for the three anions. The presence of Ac had a minimal influence on the equilibrium solution pH because of the buffering nature of the NaAc/HAc medium which buffered the released protons. The effects of anions on Cu2+ adsorption and affinity of the adsorbed Cu2+ were dependent on anion types and were apparently related to the altered surface properties caused by anion adsorption and/or the formation of anion– Cu2+ complexes.  相似文献   

15.
The patch-clamp technique was used to investigate regulation of anion channel activity in the tonoplast of Chara corallina in response to changing proton and calcium concentrations on both sides of the membrane. These channels are known to be Ca2+-dependent, with conductances in the range of 37 to 48 pS at pH 7.4. By using low pH at the vacuolar side (either pHvac 5.3 or 6.0) and a cytosolic pH (pHcyt) varying in a range of 4.3 to 9.0, anion channel activity and single-channel conductance could be reversibly modulated. In addition, Ca2+-sensitivity of the channels was markedly influenced by pH changes. At pHcyt values of 7.2 and 7.4 the half-maximal concentration (EC 50) for calcium activation was 100–200 μm, whereas an EC 50 of about 5 μm was found at a pHcyt of 6.0. This suggests an improved binding of Ca2+ ions to the channel protein at more acidic cytoplasm. At low pHcyt, anion channel activity and mean open times were voltage-dependent. At pipette potentials (V p) of +100 mV, channel activity was approximately 15-fold higher than activity at negative pipette potentials and the mean open time of the channel increased. In contrast, at pHcyt 7.2, anion channel activity and the opening behavior seemed to be independent of the applied V p. The kinetics of the channel could be further controlled by the Ca2+ concentration at the cytosolic membrane side: the mean open time significantly increased in the presence of a high cytosolic Ca2+ concentration. These results show that tonoplast anion channels are maintained in a highly active state in a narrow pH range, below the resting pHcyt. A putative physiological role of the pH-dependent modulation of these anion channels is discussed. Received: 14 March 2001/Revised: 16 July 2001  相似文献   

16.
The obligately fermentative aerotolerant bacterium Zymomonas mobilis was shown to possess oxidative phosphorylation activity. Increased intracellular ATP levels were observed in aerated starved cell suspension in the presence of ethanol or acetaldehyde. Ethanolconsuming Z. mobilis generated a transmembrane pH gradient. ATP synthesis in starved Z. mobilis cells could be induced by external medium acidification of 3.5–4.0 pH units. Membrane vesicles of Z. mobilis coupled ATP synthesis to NADH oxidation. ATP synthesis was sensitive to the protonophoric uncoupler CCCP both in starved cells and in membrane vesicles. The H+-ATPase inhibitor DCCD was shown to inhibit the NADH-coupled ATP synthesis in membrane vesicles. The physiological role of oxidative phosphorylation in this obligately fermentative bacterium is discussed.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

17.
We have studied the transport of acetate across the isolated epithelium of sheep omasum; no net transport was observed (J msJ sm) under Ussing chamber conditions. Low mucosal pH (pH 6.4) significantly enhanced J ms acetate and the transport rates of acetate increased linearly and significantly (r 2=0.99) with the luminal acetate concentration. The presence of another short chain fatty acid (propionate) did not affect J ms acetate significantly. Neither addition of 1 mmol l−1 DIDS to the mucosal side nor HCO3 replacement caused changes of J ms acetate; this does not support the assumption of acetate transport via anion exchange. Addition of 1 mmol l−1 amiloride to the mucosal side significantly decreased acetate fluxes at high mucosal acetate concentration (100 mmol l−1) and low pH (6.4) indicating interaction between acetate uptake in the undissociated form, intracellular release of protons and activation of Na+/H+ exchange (NHE). However, the mutual interaction between Na transport via NHE and acetate transport is asymmetric. Stimulation or inhibition of Na transport via NHE is much more pronounced than the corresponding changes of acetate fluxes. Thus, the obtained results support the conclusion that acetate is transported via simple diffusion and probably predominantly in the protonated form, thereby explaining the positive and mutual interaction between Na transport and short chain fatty acids.  相似文献   

18.
The fundus of an eel stomach was mounted in an Ussing chamber and bathed with control Ringer on the serosal side and with unbuffered solution on the mucosal side. The gastric mucosa exhibited a mucosa negative transepithelial voltage (V t), a “short circuit” current (I SC) and a small spontaneous acid secretion rate (J H). All these parameters were abolished by cimetidine treatment. Bilateral ion substitution experiments in tissues lacking spontaneous acid secretion suggested that a net Cl transport from serosa to mucosa was responsible for the genesis of the I SC in the absence of H+ secretion. Serosal application of histamine (10−4 mol · l−1) or carbachol (10−4 mol · l−1) stimulated both I SC and J H. The action of carbachol was independent of histamine. The control as well as the histamine-stimulated I SC was sensitive to both serosal bumetanide (10−5 mol · l−1), inhibitor of the Na+-K+-2Cl cotransport, and 4,4-diisothiocyano-stilbene-2,2-disulphonic acid (DIDS, 5 · 10−4 mol · l−1), inhibitor of the Cl-HCO 3 exchange, while the I SC stimulated by carbachol was nullified by serosal DIDS. These data suggested that the non-acidic Cl uptake across the serosal membrane was linked to the activity of both Na+-K+-2Cl cotransport and Cl-HCO 3 antiporter; histamine stimulated both transporters while carbachol was limited to the anion exchanger. The finding that the acid secretion was strictly dependent on serosal Cl and was completely blocked by serosal DIDS suggested that the Cl accompanying H+ secretion entered the cell through the serosal membrane by the Cl-HCO 3 exchange. In addition, the acid secretion stimulated by carbachol was also dependent on serosal Na+ and sensitive to the application of 5-N-N-dimethyl-amiloride in the serosal bath, suggesting that the increased activity of the Cl-HCO 3 during carbachol treatment was linked to the activation of serosal Na+-H+ exchange. The inhibitory effect of luminal omeprazole (10−4 mol · l−1) on acid secretion suggested the presence of the H+-K+ pump on the luminal membrane. Accepted: 18 September 1997  相似文献   

19.
Ruppia cirrhosa, a temperate seagrass growing in brackish water, featured a high capacity for HCO3 utilisation, which could operate over a wide pH range (from 7.5 up to 9.5) with maintained efficiency. Tris buffer inhibited this means of HCO3 utilisation in a competitive manner, while addition of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity, caused a 40–50% inhibition. A mechanism involving periplasmic carbonic anhydrase-catalysed HCO3 dehydration in acid zones, followed by a (probably diffusive) transport of the formed CO2 across the plasma membrane was thus, at least partly, responsible for the HCO3 utilisation. This mechanism, which comprises a CO2-concentrating mechanism (CCM) associated with the plasma membrane, is thus shown for the first time in an aquatic angiosperm. Additional mechanisms involved in the Tris-sensitive HCO3 utilisation could be direct HCO3 uptake (e.g., in an H+/HCO3 symport) or (more likely) non-catalysed HCO3 dehydration in the acid zones. Based on these results, and on earlier investigations on Zostera marina, a general model for analysis of HCO3 utilisation mechanisms of seagrasses is suggested. In this model, three `systems' for HCO3 utilisation are defined which are characterised (and can to some extent be quantified) by their capability to operate at high pH in combination with their response to acetazolamide and Tris. Some consequences of the fact that HCO3 utilisation and osmoregulation probably depend on the same energy source (ATP via H+-ATPase in the plasma membrane) are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Whole-cell patch-clamp techniques were used to measure anion currents through the plasma membrane of protoplasts of mesophyll cells of expanding pea (Pisum sativum L.) leaves. Voltage-induced changes of the currents could be modelled with single exponential activation and deactivation kinetics. The anion currents were activated at negative membrane potentials. The time constant of activation, τact, increased from 145 ms at −140 mV to 380 ms at −20 mV. A Boltzmann fit to the activation curve, n (ΔGVm/ΔGmax), yielded a half-activation voltage of +27 mV. Opening and closing rate constants, α and β respectively, were calculated from the values of τ and n. The currents depended on the presence of cytoplasmic Ca2+ concentrations higher than 10−6 M. Including 3 mM MgATP in the intracellular solution resulted in a voltage-dependent inactivation of the anion current. The conductance-voltage relation resulting from the voltage-dependent activation and inactivation had a maximum at about −25 mV. The relations of the current in pea are discussed with respect to the anion currents in guard cells and suspension-cultured tobacco cells, and its possible role in growing leaf cells. Received: 1 March 1996 / Accepted: 16 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号