首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A 128-bp insertion into the maize waxy-B2 allele led to the discovery of Tourist, a family of miniature inverted repeat transposable elements (MITEs). As a special category of nonautonomous elements, MITEs are distinguished by their high copy number, small size, and close association with plant genes. In maize, some Tourist elements (named Tourist-Zm) are present as adjacent or nested insertions. To determine whether the formation of multimers is a common feature of MITEs, we performed a more thorough survey, including an estimation of the proportion of multimers, with 30.2 Mb of publicly available rice genome sequence. Among the 6600 MITEs identified, >10% were present as multimers. The proportion of multimers differs for different MITE families. For some MITE families, a high frequency of self-insertions was found. The fact that all 340 multimers are unique indicates that the multimers are not capable of further amplification.  相似文献   

2.
Summary We have identified two repetitive element families in the genome of the nematodeCaenorhabditis briggsae with extensive sequence identity to theCaenorhabditis elegans transposable element Tc1. Five members each of the TCb1 (previously known as Barney) and TCb2 families were isolated by hybridization to a Tc1 probe. Tc1-hybridizing repetitive elements were grouped into either the TCb1 or TCb2 family based on cross-hybridization intensities among theC. briggsae elements. The genomic copy number of the TCb1 family is 15 and the TCb2 family copy number is 33 in theC. briggsae strain G16. The two transposable element families show numerous genomic hybridization pattern differences between twoC. briggsae strains, suggestive of transpositional activity. Two members of the TCb1 family, TCb1#5 and TCb1#10, were sequenced. Each of these two elements had suffered an independent single large deletion. TCb1#5 had a 627-bp internal deletion and TCb1#10 had lost 316 bp of one end. The two sequenced TCb1 elements were highly conserved over the sequences they shared. A 1616-bp composite TCb1 element was constructed from TCb1#5 and TCb1#10. The composite TCb1 element has 80-bp terminal inverted repeats with three nucleotide mismatches and two open reading frames (ORFs) on opposite strands. TCb1 and the 1610-bp Tc1 share 58% overall nucleotide sequence identity, and the greatest similarity occurs in their ORF1 and inverted repeat termini.  相似文献   

3.
Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.  相似文献   

4.
孙海悦  张志宏 《西北植物学报》2007,27(12):2571-2576
微型反向重复转座元件(miniature inverted repeat transposable element,MITE)是一类特殊的转座元件,在结构上与有缺失的DNA转座子相似,但具有反转录转座子高拷贝数的特点.MITE时常与基因相伴,对基因调控可能起重要作用,因此,MITE正逐渐成为基因和基因组进化及生物多样性研究的一种重要工具.本文综述了植物基因组MITE的结构、分类、活性及其应用研究进展.  相似文献   

5.
Dictyostelium plasmids Dgp1 and Dfp1, two members of the Ddp2 plasmid family, are 86% identical in nucleotide sequence. These small (4481 and 5015 bp), high copy number, nuclear plasmids carry both a gene homologous to the Ddp2 rep gene and a long 0.47- to 0. 48-kb inverted repeat region. Their Rep proteins are 82.8% identical in amino acid sequence and carry all 10 of the conserved peptide sequence motifs found in the Ddp2 family Rep proteins. Unlike other members of this family, Dgp1 carries two copies and Dfp1 carries four copies of a 162- to 166-bp direct repeat element. Both the direct and inverted repeat elements, as well as the promoter of the rep gene, are highly conserved (81 to 90% identical) between Dgp1 and Dfp1. In contrast, these regions are not highly conserved and the Rep proteins are only about 40% identical among the other known members of the plasmid family.  相似文献   

6.
7.
Tnr1 (235 bp long) is a transposable element in rice. Polymerase chain reactions (PCRs) done with a primer(s) that hybridizes to terminal inverted repeat sequences (TIRs) of Tnr1 detected new Tnr1 members with one or two insertions in rice genomes. Six identified insertion sequences (Tnr4, Tnr5, Tnr11, Tnr12, Tnr13 and RIRE9) did not have extensive homology to known transposable elements, rather they had structural features characteristic of transposable elements. Tnr4 (1767 bp long) had imperfect 64-bp TIRs and appeared to generate duplication of a 9-bp sequence at the target site. However, the TIR sequences were not homologous to those of known transposable elements, indicative that Tnr4 is a new transposable element. Tnr5 (209 bp long) had imperfect 46-bp TIRs and appeared to generate duplication of sequence TTA like that of some elements of the Tourist family. Tnr11 (811 bp long) had 73-bp TIRs with significant homology to those of Tnr1 and Stowaway and appeared to generate duplication of sequence TA, indicative that Tnr11 is a transposable element of the Tnr1/Stowaway family. Tnr12 (2426 bp long) carried perfect 9-bp TIRs, which began with 5'-CACTA- -3' from both ends and appeared to generate duplication of a 3-bp target sequence, indicative that Tnr12 is a transposable element of the En/Spm family. Tnr13 (347 bp long) had 31-bp TIRs and appeared to generate duplication of an 8-bp target sequence. Two sequences, one the transposon-like element Crackle, had partial homology in the Tnr13 ends. All five insertions appear to be defective elements derived from autonomous ones encoding the transposase gene. All had characteristic tandem repeat sequences which may be recognized by transposase. The sixth insertion sequence, named RIRE9 (3852 bp long), which begins with 5'-TG- -3' and ends with 5'- -CA-3', appeared to generate duplication of a 5-bp target sequence. These and other structural features indicate that this insertion is a solo LTR (long terminal repeat) of a retrotransposon. The transposable elements described above could be identified as insertions into Tnr1, which do not deleteriously affect the growth of rice cells.  相似文献   

8.
We have defined the genomic organization and genomic context of a Trypanosoma brucei brucei gene family encoding variant surface glycoproteins (VSGs). This gene family is neither tandemly repeated nor closely linked in the genome, and is not located on small or intermediate size chromosomes. Two dispersed repeated sequence elements, RIME-ingi and the upstream repeat sequence, are linked to members of this gene family; however, the upstream repeat sequences are closely linked only to the basic copy. In other isolates of T.b. brucei this gene family appears conserved with some variation; a restriction fragment length polymorphism found among these isolates suggests the hypothesis that VSG genes may occasionally be diploid. A model accounting for both the generation of dispersed families of VSG genes, and for the interstrain variability of VSG genes, is proposed.  相似文献   

9.
10.
11.
BACKGROUND: DNA modified by advanced glycation endproducts (AGEs) undergoes a high frequency of insertional mutagenesis. In mouse lymphoid cells, these mutations are due in part to the transposition of host genomic elements that contain a DNA region homologous to the Alu family of repetitive elements. One particular 853 bp insertion, designated INS-1, was identified previously as a DNA element common to plasmids recovered from multiple, independent lymphoid cell transfections. MATERIALS AND METHODS: To characterize the genomic origin of this element, we used a 281-bp region of non-Alu-containing INS-1 sequence, designated. CORE, as a probe in Southern hybridization and for screening a bacteriophage mouse genomic DNA library. The resultant clones were sequenced and localized within the mouse genome. RESULTS: Two distinct genomic clones of 15 kB and 17 kB in size were isolated. A 522-bp unique region common to INS-1 and corresponding to the CORE sequence was identified in each clone. In both cases, CORE was found to be surrounded by repetitive DNA sequences: a 339-bp MT repeat at the 5' end, and a 150-bp B1 repeat at the 3' end. The CORE sequence was localized to mouse chromosome 1. CONCLUSIONS: These studies revealed that the CORE region of INS is present in low copy number but is associated with known repetitive DNA elements. The presence of these repetitive elements may facilitate the transposition of CORE by recombination or other, more complex rearrangement events, and explain in part the origin of AGE-induced insertional mutations.  相似文献   

12.
Isolation and sequencing of three genes, MPAO1, MPAO2 and MPAO3, coding for polyamine oxidase (PAO) from maize (Zea mays) are reported here. Gene organization is extremely conserved among these copies, being composed of eight exons and seven introns. Furthermore, these genes encode for a protein of an almost identical amino acid sequence. These data suggest that the three MPAO copies have been derived from gene duplication of a common ancestor gene. Long inverted repeat sequences, also present in other maize genes, have been found within the second intron. Promoter sequences of MPAO1 and MPAO2 genes have been analysed for putative cis-acting elements. According to genomic Southern blot analysis, the MPAO gene family in maize and other monocots is represented by a small number of copies. Northern and western blot analysis have revealed a tissue-specific accumulation of both MPAO mRNA and protein.  相似文献   

13.
Two novel families of miniature inverted repeat transposable elements (MITEs), Vege and Mar, are described from Drosophila willistoni. Based on their structures, both element families are hypothesized to belong to the hAT superfamily of transposable elements. Both elements have perfect, inverted terminal repeats and 8-bp target site duplications and were found to have inserted within fixed copies of nonautonomous P elements. Vege is present in all studied D. willistoni populations and appears to have a relatively low copy number. Mar was identified in only a single D. willistoni population, and its copy number is presently unknown. Although MITEs occupy relatively large proportions of the genomes of a broad range of organisms, this may be their first unambiguous identification in any species of the genus Drosophila.  相似文献   

14.
Abstract Numerous miniature inverted repeat transposable elements (MITEs) are present in the rice genome but their transposition mechanisms are unknown. In this report, we present evidence that two novel MITE families may have arisen from Mutator-related transposable elements and thus may use a transposition mechanism similar to that of Mutator elements. Two families of novel MITEs, namely, MDM-1 and MDM-2, were identified by searching for MITEs nested with Kiddo, a previously identified MITE family. MDM-1 and MDM-2 bear hallmarks of Mutator elements, such as long terminal inverted repeats (LTIRs), 9-bp target-site duplications (TSDs), and putative transposase binding sites. Strikingly, the MDM-1 family has a 9-bp terminus identical to that of a rice Mutator-like element (MULE-9) and the MDM-2 family has an 8-bp terminus identical to that of the maize autonomous Mutator element MuDR. A putative transposase homologous to MURA protein is identified for the MDM-2 family. Thus, these two novel MITE families, with a total copy number of several hundred in rice, are designated Mutator-derived MITEs (MDMs). Interestingly, sequence decay analysis of MDM families revealed a number of insertion site duplications (ISDs) in the alignment gaps, and widespread historical nesting events are proposed to account for the existence of these ISDs. In addition to its value for discovering new MITEs, the nesting analysis approach used in this study simultaneously identifies MITE insertion polymorphisms.  相似文献   

15.
Fractionation (by two-dimensional polyacrylamide gel electrophoresis) of total tRNA from wheat chloroplasts yields about 33 RNA spots. Of these, 30 have been identified by aminoacylation as containing tRNAs specific for 17 amino acids. Hybridization of labeled individual tRNAs to cloned chloroplast DNA fragments has revealed the location of at least nine pairs of tRNA genes in the segments of the inverted repeat, at least twelve tRNA genes in the large single copy region and one tRNA gene in the small single copy region. A comparison of this wheat chloroplast tRNA gene map to that of maize and of other higher plants suggests that gene rearrangements have occurred during evolution, even within cereal chloroplast DNA. These rearrangements have taken place within the inverted repeat, within the large single copy region and between the inverted repeat and the large single copy region.  相似文献   

16.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

17.
18.
19.
Windsor AJ  Waddell CS 《Genetics》2000,156(4):1983-1995
A new family of transposons, FARE, has been identified in Arabidopsis. The structure of these elements is typical of foldback transposons, a distinct subset of mobile DNA elements found in both plants and animals. The ends of FARE elements are long, conserved inverted repeat sequences typically 550 bp in length. These inverted repeats are modular in organization and are predicted to confer extensive secondary structure to the elements. FARE elements are present in high copy number, are heterogeneous in size, and can be divided into two subgroups. FARE1's average 1.1 kb in length and are composed entirely of the long inverted repeats. FARE2's are larger, up to 16.7 kb in length, and contain a large internal region in addition to the inverted repeat ends. The internal region is predicted to encode three proteins, one of which bears homology to a known transposase. FARE1.1 was isolated as an insertion polymorphism between the ecotypes Columbia and Nossen. This, coupled with the presence of 9-bp target-site duplications, strongly suggests that FARE elements have transposed recently. The termini of FARE elements and other foldback transposons are imperfect palindromic sequences, a unique organization that further distinguishes these elements from other mobile DNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号