首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines variability in masticatory morphology as a function of dietary preference among the African apes. The African apes differ in the degree to which they consume leaves and other fibrous vegetation. Gorilla gorilla beringei, the eastern mountain gorilla, consumes the most restricted diet comprised of mechanically resistant foods such as leaves, pith, bark, and bamboo. Gorilla gorilla gorilla, the western lowland gorilla subspecies, consumes leaves and other terrestrial herbaceous vegetation (THV) but also consumes a fair amount of ripe, fleshy fruit. In contrast to gorillas, chimpanzees are frugivores and rely on vegetation primarily as fallback foods. However, there has been a long-standing debate regarding whether Pan paniscus, the pygmy chimpanzee (or bonobo), consumes greater quantities of THV as compared to Pan troglodytes, the common chimpanzee. Because consumption of resistant foods involves more daily chewing cycles and may require larger average bite force, the mechanical demands placed on the masticatory system are expected to be greater in folivores as compared to primates that consume large quantities of fleshy fruit. Therefore, more folivorous taxa are predicted to exhibit features that improve load-resistance capabilities and increase force production. To test this hypothesis, jaw and skull dimensions were compared in ontogenetic series of G. g. beringei, G. g. gorilla, P. t. troglodytes, and P. paniscus. Controlling for the influence of allometry, results show that compared to both chimpanzees and bonobos, gorillas exhibit some features of the jaw complex that are suggestive of improved masticatory efficiency. For example, compared to all other taxa, G. g. beringei has a significantly wider mandibular corpus and symphysis, larger area for the masseter muscle, higher mandibular ramus, and higher mandibular condyle relative to the occlusal plane of the mandible. However, the significantly wider mandibular symphysis may be an architectural response to increasing symphyseal curvature with interspecific increase in size. Moreover, Gorilla and Pan do not vary consistently in all features, and some differences run counter to predictions based on dietary variation. Thus, the morphological responses are not entirely consonant with predictions based on hypothesized loading regimes. Finally, despite morphological differences between bonobos and chimpanzees, there is no systematic pattern of differentiation that can be clearly linked to differences in diet. Results indicate that while some features may be linked to differences in diet among the African apes, diet alone cannot account for the patterns of morphological variation demonstrated in this study. Allometric constraints and dental development also appear to play a role in morphological differentiation among the African apes.  相似文献   

2.
A number of researchers have suggested a functional relationship between dietary variation and temporomandibular joint (TMJ) morphology, yet few studies have evaluated TMJ form in the African apes. In this study, I compare TMJ morphology in adults and during ontogeny in Gorilla (G.g. beringei, G.g. graueri, and G.g. gorilla) and Pan (P. paniscus, P. troglodytes troglodytes, P.t. schweinfurthii, and P.t. verus). I test two hypotheses: first, compared to all other African apes, G.g. beringei exhibits TMJ morphologies that would be predicted for a primate that consumes a diet comprised primarily of moderately to very tough, leafy vegetation; and second, all gorillas exhibit the same predicted morphologies compared to Pan. Compared to all adult African apes, G.g. beringei has higher rami and condyles positioned further above the occlusal plane of the mandible, relative to jaw length. Thus, mountain gorillas have the potential to generate relatively more muscle force, more evenly distribute occlusal forces along the postcanine teeth, and generate relatively greater jaw adductor moment. G.g. beringei also exhibits relatively wider mandibular condyles, suggesting these folivorous apes are able to resist relatively greater compressive loads along the lateral and/or medial aspect of the condyle. All gorillas likewise exhibit these same shape differences compared to Pan. These morphological responses are the predicted consequences of intensification of folivory and, as such, provide support for functional hypotheses linking these TMJ morphologies to degree of folivory. The African apes to not, however, demonstrate a systematic pattern of divergence in relative condylar area as a function of intensification of folivory. The ontogenetic trajectories for gorillas are significantly elevated above those of Pan, and to a lesser but still significant degree, mountain gorillas similarly deviate from lowland gorillas (G.g. gorilla and G.g. graueri). Thus, adult shape differences in ramal and condylar heights do not result from the simple extrapolation of common growth allometries relative to jaw length. As such, they are suggestive of an adaptive shift towards a tougher, more folivorous diet. However, the allometric patterning for condylar area and condylar width does not systematically conform to predictions based on dietary specialization. Thus, while differences in condylar shapes may confer functional advantages both during growth and as adults, there is no evidence to suggest selection for altered condylar proportions, independent of the effects of changes in jaw size.  相似文献   

3.
Based on extensive experimental work on primates, two masticatory loading regimes have emerged as the likely determinants of mandibular symphyseal fusion-dorsoventral shear and lateral transverse bending (wishboning) (Ravosa and Hylander, 1994; Hylander et al., 1998, 2000). Recently, however, it has been argued that, rather than functioning to strengthen the symphysis during mastication, fusion serves to stiffen the symphyseal joint so as to facilitate increased transverse jaw movements during occlusion (Lieberman and Crompton, 2000). As part of this transverse stiffness model, it has been suggested that taxa with fused symphyses should also exhibit more horizontally oriented occlusal wear facets. Using a series of univariate and bivariate analyses, we test predictions of these three models in a sample of 44 species of selenodont artiodactyls. Consistent with the wishboning and transverse stiffness models, taxa with fused symphyses (camelids) have more horizontally oriented M(2) and M(2) occlusal wear facets, anteroposteriorly (AP) elongate symphyses, and relatively wider corpora. Contrary to the dorsoventral shear model, camelids do not have relatively deeper corpora (due to greater parasagittal bending). While taxa with ossified symphyses have relatively larger symphysis cross-sectional areas, this appears to be the byproduct of an increase in AP symphysis length due to greater lateral transverse bending of the mandible. Theoretical consideration of the biomechanics of mastication further suggests that strength, not stiffness, is the critical factor in determining symphyseal ossification. Thus, like anthropoid primates, fusion in selenodont artiodactyls appears to function in resisting increased wishboning stresses arising from an emphasis on transverse occlusal/mandibular movements and loads.  相似文献   

4.
The gorillas that inhabit Bwindi Impenetrable National Park in Uganda are the least known of the eastern gorillas. Because they are an allopatric population living a minimum of 25 km from the well‐studied population of mountain gorillas (Gorilla beringei beringei) in Rwanda and have certain morphological and ecological differences from these gorillas, their taxonomic status has been in question in recent years. This study presents new craniodental metrics from Bwindi individuals and compares them to Virunga individuals as well as to eastern lowland gorillas, G. gorilla graueri. Multivariate statistics, including MANCOVA, least‐squares, regression, and principal components analyses, were used to evaluate how closely the Bwindi crania resemble the Virunga crania and how both relate to G. g. graueri. Results indicate that the Bwindi gorillas have generally smaller crania than the Virunga gorillas, but when metrics are log‐transformed, the only variable that distinguishes the Bwindi individuals is a longer face. When both populations are compared to G. g. graueri, they cluster together separately from the eastern lowland gorillas, sharing such features as higher rami, wider bigonia, longer mandibles, and wider and shorter mandibular symphyses in relation to G. g. graueri. Functional morphological explanations for these differences are discussed, but lacking measurements of the physical properties of G. g. graueri, they cannot fully be explained. Results clearly indicate that at least pertaining to the cranium, upon which most gorilla taxonomy is based, the Bwindi gorillas are proper mountain gorillas (G. b. beringei). Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The most important environmental factor explaining interspecies variation in ecology and sociality of the great apes is likely to be variation in resource availability. Relatively little is known about the activity patterns of western lowland gorillas (Gorilla gorilla gorilla), which inhabit a dramatically different environment from the well‐studied mountain gorillas (G. beringei beringei). This study aims to provide a detailed quantification of western lowland gorillas' activity budgets using direct observations on one habituated group in Bai Hokou, Central African Republic. We examined how activity patterns of both sexes are shaped by seasonal frugivory. Activity was recorded with 5‐min instantaneous sampling between December 2004 and December 2005. During the high‐frugivory period the gorillas spent less time feeding and more time traveling than during the low‐frugivory period. The silverback spent less time feeding but more time resting than both females and immatures, which likely results from a combination of social and physiological factors. When compared with mountain gorillas, western lowland gorillas spend more time feeding (67 vs. 55%) and traveling (12 vs. 6.5%), but less time resting (21 vs. 34%) and engaging in social/other activities (0.5 vs. 3.6%). This disparity in activity budgets of western lowland gorillas and mountain gorillas may be explained by the more frugivorous diet and the greater dispersion of food resources experienced by western lowland gorillas. Like other apes, western lowland gorillas change their activity patterns in response to changes in the diet. Am. J. Primatol. 71:91–100, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.  相似文献   

7.
In vivo study of mastication in adult cercopithecine primates demonstrates a link between mandibular symphyseal form and resistance to “wishboning,” or lateral transverse bending. Mechanical consideration of wishboning at the symphysis indicates exponentially higher stresses along the lingual surface with increasing symphyseal curvature. Lengthening the anteroposterior width of the symphysis acts to resist these higher loads. Interspecific adult cercopithecine allometries show that both symphyseal curvature and symphyseal width exhibit positive allometry relative to body mass. The experimental and allometric data support an hypothesis that the cercopithecine mandibular symphysis is designed to maintain functional equivalence—in this case dynamic strain similarity—in wishboning stress and strain magnitudes across adult cercopithecines. We test the hypothesis that functional equivalence during masticatory wishboning is maintained throughout ontogeny by calculating relative stress estimates from morphometric dimensions of the mandibular symphysis in two cercopithecine primates, Macaca fascicularis and M. nemestrina. Results indicate no significant differences in relative stress estimates among the two macaque ontogenies and an interspecific sample of adult papionin primates. Further, relative stress estimates do not change significantly throughout ontogeny in either species. These results offer the first evidence for the maintenance of functional equivalence in stress and strain levels during postnatal growth in a habitually loaded cranial structure. Scaling analyses demonstrate significant slope differences for both symphyseal curvature and width between the ontogenetic and interspecific samples. The distinct interspecific cercopithecine slopes are realized by a series of ontogenetic transpositions in both symphyseal curvature and width. Throughout papionin ontogeny, symphyseal curvature increases with less negative allometry, while symphysis width increases with less positive allometry versus the interspecific pattern. As symphyseal curvature and width are inversely proportional to one another in estimating relative stresses, functionally equivalent stress levels are maintained both ontogenetically and interspecifically, because the relatively slower rate of allometric increase in symphyseal curvature during growth is compensated for by a slower rate of allometric increase in symphyseal width. These results indicate the primacy of maintaining functional equivalence during growth and the need for ontogenetic data in understanding the evolutionary processes that affect form–function relations as well as the interspecific patterning of adult form across a clade. J. Morphol. 235:157–175, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. Am J Phys Anthropol 156:252–262, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Jaw-muscle electromyographic (EMG) patterns indicate that compared with thick-tailed galagos and ring-tailed lemurs, anthropoids recruit more relative EMG from their balancing-side deep masseter, and that this muscle peaks late in the power stroke. These recruitment and firing patterns in anthropoids are thought to cause the mandibular symphysis to wishbone (lateral transverse bending), resulting in relatively high symphyseal stresses. We test the hypothesis that living strepsirrhines with robust, partially fused symphyses have muscle recruitment and firing patterns more similar to anthropoids, unlike those strepsirrhines with highly mobile unfused symphyses. Electromyographic (EMG) activity of the superficial and deep masseter, anterior and posterior temporalis, and medial pterygoid muscles were recorded in four dentally adult Verreaux's sifakas (Propithecus verreauxi). As predicted, we find that sifaka motor patterns are more similar to anthropoids. For example, among sifakas, recruitment levels of the balancing-side (b-s) deep masseter are high, and the b-s deep masseter fires late during the power stroke. As adult sifakas often exhibit nearly complete symphyseal fusion, these data support the hypothesis that the evolution of symphyseal fusion in primates is functionally linked to wishboning. Furthermore, these data provide compelling evidence for the convergent evolution of the wishboning motor patterns in anthropoids and sifakas.  相似文献   

10.
The purpose of this study is to fill a gap in our knowledge of dietary and allometric determinants of masticatory function and mandibular morphology in major catarrhine clades. To extend the implications of previous work on variation in mandibular form and function in other primates, a scaling analysis was performed on 20 extinct and 7 living non-cercopithecoid catarrhines or 'dental apes'. Results of allometric comparisons indicate that for a given jaw length, larger apes exhibit significantly more robust corpora and symphyses than smaller forms. This appears linked to size-related increases in dietary toughness and/or hardness, which in turn causes elevated mandibular loads and/or greater repetitive loading during unilateral mastication. Larger-bodied dental apes also display more curved symphyses, which also explains the positive allometry of symphysis width and height. In apes, proconsulids often evince more robust jaws while all hylobatids, Pan and Dryopithecus laietanus possess more gracile cross sections. In propliopithecids, Aegyptopithecus is always more robust than Propliopithecus. In proconsulids, Rangwapithecus and Micropithecus commonly exhibit more robust jaws whereas Dendropithecus and especially Simiolus are more gracile. Most of the larger taxa are folivorous and/or hard-object frugivorous pongids with relatively larger dentaries. Though apes have relatively wider corpora than cercopithecines due to greater axial twisting of the corpora during chewing, they are otherwise alike in robusticity levels. Smaller apes are similar to cercopithecines in evincing a relatively high degree of symphyseal curvature, while larger taxa are like colobines in having less curvature. Larger pongids resemble or even exceed colobine jaw proportions and thus appear to converge on colobines in terms of the mechanical properties of their diets.  相似文献   

11.
Knuckle-walking is a pattern of digitigrade locomotion unique to African apes among Primates. Only chimpanzees and gorillas are specially adapted for supporting weight on the dorsal aspects of middle phalanges of flexed hand digits II–V. When forced to the ground, most orangutans assume one of a variety of flexed hand postures, but they cannot knuckle-walk. Some orangutans place their hands in palmigrade postures which are impossible to African apes. The knuckle-walking hands and plantigrade feet of African apes are both morphologically and adaptively distinct from those of Pongo, their nearest relative among extant apes. These features are associated with a common adaptive shift to terrestrial locomotion and support placing chimpanzees and gorillas in the same genus Pan. It is further suggested than Pan comprises the subgenera (a) Pan, including P. troglodytes and pygmy chimpanzees, and (b) Gorilla, including mountain and lowland populations of P. gorilla. African apes probably diverged from ancestral pongids that were specially adapted for distributing their weight in terminal branches of the forest canopy. Early adjustments to terrestrial locomotion may have involved fist-walking which later evolved into knuckle-walking. Orangutans continued to adapt to feeding and locomotion in the forest canopy and their hands and feet became highly specialized for four-digit prehension. Although chimpanzees retained arboreal feeding and nesting habits, they moved from tree to tree by terrestrial routes and became less restricted in habitat. While adapting to a diet of ground plants gorillas increased in size to the point that arboreal nesting is less frequent among them than among chimpanzees and orangutans. Early hominids probably diverged from pongids that had not developed prospective adaptations to knuckle-walking, and therefore did not evolve through a knuckle-walking stage. Initial adjustments to terrestrial quadrupedal locomotion and resting stance probably included palmigrade hand posturing. Their thumbs may have been already well developed as an adaptation for grasping during arboreal climbing. A combination of selection pressures for efficient terrestrial locomotor support and for object manipulation further advanced early hominid hands toward modern human configuration.  相似文献   

12.
Aim In this study we use a modelling approach to identify: (1) the factors responsible for the differences in ape biogeography, (2) the effects that global warming might have on distribution patterns of African apes, (3) the underlying mechanisms for these effects, and (4) the implications that behavioural flexibility might be expected to have for ape survival. All African apes are highly endangered, and the need for efficient conservation methods is a top priority. The expected changes in world climate are likely to further exacerbate the difficulties they face. Our study aims to further understand the mechanisms that link climatic conditions to the behaviour and biogeography of ape species. Location Africa. Method We use an existing validated time budgets model, derived from data on 20 natural populations of gorillas (Gorilla beringei and Gorilla gorilla) and chimpanzees (Pan troglodytes and Pan paniscus), which specifies the relationship between climate, group size, body weight and time available for various activities, to predict ape distribution across Africa under a uniform worst‐case climate change scenario. Results We demonstrate that a worst‐case global warming scenario is likely to alter the delicate balance between different time budget components. Our model points to the importance of annual temperature variation, which was found to have the strongest impact on ape biogeography. Our simulation indicates that rising temperatures and changes in rainfall patterns are likely to have strong effects on ape survival and distribution, particularly for gorillas. Even if they behaved with maximum flexibility, gorillas may not be able to survive in most of their present habitats if the climate was to undergo extreme changes. The survival of chimpanzees was found to be strongly dependent on the minimum viable group size required. Main conclusions Our model allows us to explore how climatic conditions, individual behaviour and morphological traits may interact to limit the biogeographical distributions of these species, thereby allowing us to predict the effects of climate change on African ape distributions under different climate change regimes. The model suggests that climate variability (i.e. seasonality) plays a more important role than the absolute magnitude of the change, but these data are not normally provided by climate models.  相似文献   

13.
Ontogenetic changes in the morphology of the mandibular symphysis are described in Archaeolemur so as to infer the functional significance of symphyseal fusion in this subfossil Malagasy lemur. The first regions of the symphysis to show a more complex morphology were the lower and anterior borders of the joint and, to a lesser extent, the lingual borders of the superior and inferior transverse tori. During growth, these regions became increasingly rugose and encroached upon a centrally located, smooth, “oval” region, which may have been a principal pathway for neurovascular structures communicating with the unfused joint. In subadults, the symphysis was completely fused except for the lingual surface of the inferior transverse torus, where a patent suture and potential space were present between dentaries. Thus, in Archaeolemur there was an age- and size-related pattern of increased symphyseal ossification or fusion that was complete by adulthood. The morphology of the interlocking bony processes and the sequence of ossification in the symphysis suggest that increased dorsoventral shear stress during mastication was the most likely determinant of symphyseal fusion in Archaeolemur: The allometric pattern of greater symphyseal fusion may be linked to the presence of relatively greater dorsoventral shear in adults due to an increased recruitment of balancing-side jaw-muscle force. There is little indication that the symphysis of juvenile Archaeolemur was buttressed to resist forces associated with “wishboning” during mastication or vertical bending during incision. Our observations, as well as those of others, suggest that symphyseal fusion in primates occurs initially as a response to increased dorsoventral shear during mastication. Therefore, wishboning stress might only become a major determinant of symphyseal form and function in those taxa that develop a fused symphysis to counter increased dorsoventral shear. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Biomechanical scaling of the hominoid mandibular symphysis   总被引:4,自引:0,他引:4  
Experimental investigation of mandibular bone strain in cercopithecine primates has established that the mandible is bent in the transverse plane during the power stroke of mastication. Additional comparative work also supports the assumption that the morphology of the mandibular symphysis is functionally linked to the biomechanics of lateral transverse bending, or "wishboning" of the mandibular corpus. There are currently no experimental data to verify that lateral transverse bending constitutes an important loading regime among hominoid primates. There are, however, allometric models from cercopithecoid primates that allow prediction of scaling patterns in hominoid mandibular dimensions that would be consistent with a mechanical environment that includes wishboning as a significant component. This study uses computed tomography (CT) scans to visualize cortical bone distribution in the anterior corpus of a sample of four genera of extant hominoids. From the cortical bone contours, area properties of the mandibular symphysis are calculated, and these variables are subjected to an allometric analysis to detect whether scaling of jaw dimensions are consistent with a wishboning loading regime. Scaling of the hominoid symphysis recalls patterns observed in cercopithecoid monkeys, which lends indirect support for the hypothesis that wishboning is an integral part of the masticatory loading environment in living apes. Inclination of the symphysis, rather than changes in cross-sectional shape or development of the superior transverse torus, represents a morphological solution for minimizing the potentially harmful effects of wishboning in the jaws of these primates.  相似文献   

15.
Compared with other African apes, eastern gorillas (Gorilla beringei) have been little studied genetically. We used analysis of autosomal DNA genotypes obtained from non-invasively collected faecal samples to estimate the evolutionary histories of the two extant mountain gorilla populations and the closely related eastern lowland gorillas. Our results suggest that eastern lowland gorillas and mountain gorillas split beginning some 10 000 years ago, followed 5000 years ago by the split of the two mountain gorilla populations of Bwindi Impenetrable National Park and the Virungas Massif. All three populations have decreased in effective population size, with particularly substantial 10-fold decreases for the mountain gorillas. These dynamics probably reflect responses to habitat changes resulting from climate fluctuations over the past 20 000 years as well as increasing human influence in this densely populated region in the last several thousand years.  相似文献   

16.
This report presents data regarding the brain structure of mountain gorillas (Gorilla beringei beringei) in comparison with other great apes. Magnetic resonance (MR) images of three mountain gorilla brains were obtained with a 3T scanner, and the volume of major neuroanatomical structures (neocortical gray matter, hippocampus, thalamus, striatum, and cerebellum) was measured. These data were included with our existing database that includes 23 chimpanzees, three western lowland gorillas, and six orangutans. We defined a multidimensional space by calculating the principal components (PCs) from the correlation matrix of brain structure fractions in the well-represented sample of chimpanzees. We then plotted data from all of the taxa in this space to examine phyletic variation in neural organization. Most of the variance in mountain gorillas, as well as other great apes, was contained within the chimpanzee range along the first two PCs, which accounted for 61.73% of the total variance. Thus, the majority of interspecific variation in brain structure observed among these ape taxa was no greater than the within-species variation seen in chimpanzees. The loadings on PCs indicated that the brain structure of great apes differs among taxa mostly in the relative sizes of the striatum, cerebellum, and hippocampus. These findings suggest possible functional differences among taxa in terms of neural adaptations for ecological and locomotor capacities. Importantly, these results fill a critical gap in current knowledge regarding great ape neuroanatomical diversity.  相似文献   

17.
A survey in 1994 examined intestinal helminths and bacterial flora of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Parasites and bacteria were identified to genus in the feces of two groups of tourist-habituated and one group of non-tourist-habituated mountain gorillas. Eggs were identified as those of an anoplocephalid cestode, and nematode eggs representative of the genera: Trichuris, Ascaris, Oesophagostomum, Strongyloides, and Trichostrongylus. This is the first report of Ascaris lumbricoides-like eggs in mountain gorillas. Fecal samples (n=76) from all groups contained helminth eggs, with strongyle eggs and anoplocephalid eggs being the most common. Salmonella and Campylobacter were found in both gorilla groups. Regular long-term non-invasive fecal monitoring of the populations of mountain gorillas is essential for the prevention and identification of potential health threats by intestinal parasites and bacteria in this highly endangered subspecies.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

18.
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well‐established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons. Am J Phys Anthropol 153:387–396, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The mountain gorillas (Gorilla beringei beringei) of the Virunga Volcanoes Range of Rwanda, Uganda, and the Democratic Republic of Congo are one of the most endangered ape populations in the world. Following a dramatic decline during the 1960s, and relative stability in the 1970s, the population steadily increased during the 1980s. Due to political instability and war, a complete census had not been conducted since 1989. Here we compare the results of a complete census using the ‘sweep method’ conducted in 2003 with those from a monitoring program, to estimate the size and distribution of the gorilla population. A total of 360 gorillas were counted from census measurements and known habituated groups. Based on quantitative assessments of the census accuracy, we calculated that an additional 20 gorillas were not counted, leading to an estimated population of 380 individuals, and a 1.15% annual growth rate since 1989. The Ranger Based Monitoring programme yielded similar results. The encouraging results must be viewed with caution, however, because the growth was concentrated almost entirely in one section of the Virungas. Additionally, the distribution of gorilla groups was negatively correlated with the frequency of human disturbances, which highlights the need to continue strengthening conservation efforts.  相似文献   

20.
Ape Abundance and Habitat Use in the Goualougo Triangle, Republic of Congo   总被引:1,自引:0,他引:1  
Chimpanzee (Pan troglodytes troglodytes) and western gorilla (Gorilla gorilla gorilla) populations in central Africa are rapidly declining as a result of disease epidemics, commercial bushmeat hunting, and habitat destruction. Our main objective was to estimate the absolute abundance and habitat utilization of chimpanzees and gorillas in the intact forests of the Goualougo Triangle in the Republic of Congo, and in an adjacent area in which selective logging will take place in the near future. The estimates provide a unique baseline for apes inhabiting an undisturbed environment. A second objective was to compare estimates of abundance and patterns of habitat utilization generated by different techniques: 1) distance sampling of individual ape nests and nest sites along line transects, 2) direct observations of apes during reconnaissance surveys, and 3) observations of ape traces during reconnaissance surveys. We completed a total of 222 km of line transect surveys in 4 sampling areas, resulting in overall density estimates of 1.53 chimpanzees/km2 and 2.34 gorillas/km2 from nest sites. We generated a density estimate of 2.23 chimpanzees/km2 from direct observations during reconnaissance surveys of a semihabituated community in 1 of the 4 sampling areas. Habitat use profiles that nest surveys depicted on transects differed from those of direct observations and traces we encountered on reconnaissance surveys. We found the highest overall abundance of chimpanzee nests in monodominant Gilbertiodendron forest, whereas our direct observations showed that chimpanzees preferred mixed species forest. Transects that traversed the core area of the community range had the highest encounter rates of chimpanzee nests and nest sites. Gorilla nests on transects showed a preference only for mixed species forest with an open canopy, but direct observations and traces on reconnaissance surveys clearly indicated that gorillas use several habitat types. We conclude by evaluating the precision of these nest surveys and our ability to detect future trends in ape densities in the Goualougo Triangle.
Samantha StrindbergEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号