首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Aim The aim of this paper is to examine taxonomic homogenization in ungulates globally and at the local scale in South Africa. Specifically, we aim to examine the roles of distance, scale, time, extinctions vs. introductions, and extralimital vs. extraregional introductions in the homogenization of ungulate biotas, and to determine pathways of introduction of ungulate species globally and the proximate explanatory variables of ungulate introductions in South Africa. Location Forty‐one countries globally and three spatial resolutions in South Africa. Methods Indigenous, extirpated and established introduced ungulate species data were obtained for countries globally, and at a quarter‐degree grid‐cell resolution in South Africa. Homogenization was calculated using Jaccard’s index of similarity (JI) for countries globally and for three spatial resolutions in South Africa. Zoo holdings and transfer data from the International Species Information System database were used to investigate the relationship between non‐indigenous ungulate species introductions and the number of non‐indigenous ungulate species in zoos. Relationships between JI and species richness, and between numbers of introductions and several environmental and social factors were examined using generalized linear models. Results Homogenization in ungulates was 2% for countries globally and 8% at the coarsest resolution in South Africa. Homogenization increased with increasing resolution and with time, but it decreased with increasing percentage change in species richness. Globally, introductions contributed more to homogenization than did extinctions. Within South Africa, extralimital introductions contributed more to the homogenization of ungulate assemblages than did extraregional ones, and ungulates were typically introduced to high‐income areas with high human population and livestock densities. The same was not true in the past, when ungulates were introduced to ungulate species‐poor areas. The number of non‐indigenous ungulate species established in a country is significantly related to the number of non‐indigenous ungulate species in zoos in the country, possibly owing to sales of surplus animals from zoos. Main conclusions Ungulate faunas are homogenized at both the global scale and in South Africa, with extralimital introductions being of considerable significance regionally. In consequence, increasing attention will have to be given to the conservation consequences of ungulate translocations, both within particular geopolitical regions and across the globe.  相似文献   

2.
Huang CC  Hung KH  Wang WK  Ho CW  Huang CL  Hsu TW  Osada N  Hwang CC  Chiang TY 《Gene》2012,499(1):194-201
Recovering the genetic divergence between species is one of the major interests in the evolutionary biology. It requires accurate estimation of the neutral substitution rates. Arabidopsis thaliana, the first whole-genome sequenced plant, and its out-crossing relatives provide an ideal model for examining the split between sister species. In the study, rates of molecular evolution at markers frequently used for systematics and population genetics, including 14 nuclear genes spanning most chromosomes, three noncoding regions of chloroplast genome, and one intron of mitochondrial genome, between A. thaliana and four relatives were estimated. No deviation from neutrality was detected in the genes examined. Based on the known divergence between A. thaliana and its sisters about 8.0-17.6 MYA, evolutionary rates of the eighteen genes were estimated. Accordingly, the ratio of rates of synonymous substitutions among mitochondrial, chloroplast and nuclear genes was calculated with an average and 95% confidence interval of 1 (0.25-1.75): 15.77 (7.48-114.09): 74.79 (36.27-534.61). Molecular evolutionary rates of nuclear genes varied, with a range of 0.383-0.856×10(-8) for synonymous substitutions per site per year and 0.036-0.081×10(-9) for nonsynonymous substitutions per site per year. Compared with orthologs in Populus, a long life-span tree, genes in Arabidopsis evolved faster in an order of magnitude at the gene level, agreeing with a generation time hypothesis. The estimated substitution rates of these genes can be used as a reference for molecular dating.  相似文献   

3.
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two‐step manner. At meiosis I, the meiosis‐specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T‐DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.  相似文献   

4.
5.
Poorly known relatives of Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Non-model Arabidopsis species have been widely used as outgroup taxa in studies of molecular evolution. In Arabidopsis lyrata, Arabidopsis halleri and Arabidopsis arenosa, traits pertaining to self-incompatibility, heavy metal tolerance and inter-specific hybridization have been subjected to detailed genetic analysis. However, the full potential for exploring the causes and consequences of natural variation in complex traits within the genus Arabidopsis has not been widely appreciated or realized. Here, we draw on broadly dispersed information to characterize the basic biology, ecology, population genetics and molecular evolution for these three non-model Arabidopsis species. We illustrate how the wealth of functional and genomic tools pioneered in A. thaliana can be applied to gain insights into adaptive evolution of ecologically important traits and genome-wide processes, such as polyploidy, speciation and reticulate evolution, within and among Arabidopsis species.  相似文献   

6.
7.
Artificial neural networks have been combined with a rule based system to predict intron splice sites in the dicot plant Arabidopsis thaliana. A two step prediction scheme, where a global prediction of the coding potential regulates a cutoff level for a local prediction of splice sites, is refined by rules based on splice site confidence values, prediction scores, coding context and distances between potential splice sites. In this approach, the prediction of splice sites mutually affect each other in a non-local manner. The combined approach drastically reduces the large amount of false positive splice sites normally haunting splice site prediction. An analysis of the errors made by the networks in the first step of the method revealed a previously unknown feature, a frequent T-tract prolongation containing cryptic acceptor sites in the 5' end of exons. The method presented here has been compared with three other approaches, GeneFinder, Gene-Mark and Grail. Overall the method presented here is an order of magnitude better. We show that the new method is able to find a donor site in the coding sequence for the jelly fish Green Fluorescent Protein, exactly at the position that was experimentally observed in A.thaliana transformants. Predictions for alternatively spliced genes are also presented, together with examples of genes from other dicots, monocots and algae. The method has been made available through electronic mail (NetPlantGene@cbs.dtu.dk), or the WWW at http://www.cbs.dtu.dk/NetPlantGene.html  相似文献   

8.
Guo YL  Zhao X  Lanz C  Weigel D 《Plant physiology》2011,157(2):937-946
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.  相似文献   

9.
GEMI: a non-linear index to monitor global vegetation from satellites   总被引:12,自引:0,他引:12  
Knowledge about the state, spatial distribution and temporal evolution of the vegetation cover is of great scientific and economic value. Satellite platforms provide a most convenient tool to observe the biosphere globally and repetitively, but the quantitative interpretation of the observations may be difficult. Reflectance measurements in the visible and near-infrared regions have been analyzed with simple but powerful indices designed to enhance the contrast between the vegetation and other surface types, however, these indices are rather sensitive to atmospheric effects. The correction of satellite data for atmospheric effects is possible but requires large data sets on the composition of the atmosphere. Instead, we propose a new vegetation index which has been designed specifically to reduce the relative effects of these undesirable atmospheric perturbations, while maintaining the information about the vegetation cover.  相似文献   

10.
Daily global observations from the Advanced Very High‐Resolution Radiometers on the series of meteorological satellites operated by the National Oceanic and Atmospheric Administration between 1982 and 1999 were used to generate a new weekly global burnt surface product at a resolution of 8 km. Comparison with independently available information on fire locations and timing suggest that while the time‐series cannot yet be used to make accurate and quantitative estimates of global burnt area it does provide a reliable estimate of changes in location and season of burning on the global scale. This time‐series was used to characterize fire activity in both northern and southern hemispheres on the basis of average seasonal cycle and interannual variability. Fire seasonality and fire distribution data sets have been combined to provide gridded maps at 0.5° resolution documenting the probability of fire occurring in any given season for any location. A multiannual variogram constructed from 17 years of observations shows good agreement between the spatial–temporal behavior in fire activity and the ‘El Niño’ Southern Oscillation events, showing highly likely connections between both phenomena.  相似文献   

11.
Much is known about the evolution of plant immunity components directed against specific pathogen strains: They show pervasive functional variation and have the potential to coevolve with pathogen populations. However, plants are effectively protected against most microbes by generalist immunity components that detect conserved pathogen-associated molecular patterns (PAMPs) and control the onset of PAMP-triggered immunity. In Arabidopsis thaliana, the receptor kinase flagellin sensing 2 (FLS2) confers recognition of bacterial flagellin (flg22) and activates a manifold defense response. To decipher the evolution of this system, we performed functional assays across a large set of A. thaliana genotypes and Brassicaceae relatives. We reveal extensive variation in flg22 perception, most of which results from changes in protein abundance. The observed variation correlates with both the severity of elicited defense responses and bacterial proliferation. We analyzed nucleotide variation segregating at FLS2 in A. thaliana and detected a pattern of variation suggestive of the rapid fixation of a novel adaptive allele. However, our study also shows that evolution at the receptor locus alone does not explain the evolution of flagellin perception; instead, components common to pathways downstream of PAMP perception likely contribute to the observed quantitative variation. Within and among close relatives, PAMP perception evolves quantitatively, which contrasts with the changes in recognition typically associated with the evolution of R genes.  相似文献   

12.
Satellite sequences of the VicTR-B family are specific for the genus Vicia (Leguminosae), but their abundance varies among the species, being the highest in Vicia sativa and Vicia grandiflora. In this study, we have sequenced multiple randomly cloned VicTR-B fragments from these two species and analyzed their sequence variability, periodicity, and chromosomal localization. We have found that V. sativa VicTR-B sequences are homogeneous with respect to their nucleotide sequences and periodicity (monomers of 38 bp), whereas V. grandiflora repeats are considerably more variable, occurring in at least four distinct sequence subfamilies. Although the periodicity of 38 bp was conserved in most of the V. grandiflora sequences, one of the subfamilies was composed of higher-order repeats of 186 bp, which originated from a pentamer of the basic repeated unit. Individual VicTR-B subfamilies were preferentially located in either intercalary or subtelomeric regions of chromosomes. Interestingly, two V. grandiflora subfamilies with the highest similarity to V. sativa VicTR-B sequences were located in intercalary heterochromatic bands, showing similar chromosomal distribution as the majority of VicTR-B repeats in V. sativa. The other two V. grandiflora subfamilies showing a considerable divergence from V. sativa sequences were found to be accumulated at subtelomeric regions of V. grandiflora chromosomes.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Communicated by I. Schubert  相似文献   

13.
The Lhc super-gene family encodes the light-harvesting chlorophyll a/b-binding (LHC) proteins that constitute the antenna system of the photosynthetic apparatus, and also includes some relatives whose functions are more or less unknown. The Lhc super-gene family of Arabidopsis contains >30 members and the databases contain >1000 EST clones originating from these genes. This article presents an overview of these genes and provides some tools for researchers who want to use them in their studies.  相似文献   

14.
For the increasing number of species with complete genome sequences, the task of elucidating their complete proteomes and interactomes has attracted much recent interest. Although the proteome describes the complete repertoire of proteins expressed, the interactome comprises the pairwise protein-protein interactions that occur, or could occur, within an organism, and forms a large-scale sparse network. Here we discuss the challenges provided by present data, and outline a route from global analysis to more detailed and focused studies of protein-protein interactions. Carefully using protein-interaction data allows us to explore its potential fully alongside the evaluation of mechanistic hypotheses about biological systems.  相似文献   

15.
16.
To add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A. thaliana chromosome 1. We used a newly developed method for marker development for single nucleotide polymorphisms present in gene sequences, plus length differences, to map genes in an A. lyrata family, including variants in several genes close to the A. thaliana centromere 1, providing the first data on the location of an A. lyrata centromere; we discuss the implications for the evolution of chromosome 1 of A. thaliana. With our larger marker density, large rearrangements between the two Arabidopsis species are excluded, except for a large inversion on LG2. This was previously known in Capsella; its presence in A. lyrata suggests that, like most other rearrangements, it probably arose in the A. thaliana lineage. Knowing that marker orders are similar, we can now compare homologous, non-rearranged map distances to test the prediction of more frequent crossing-over in the more inbreeding species. Our results support the previous conclusion of similar distances in the two species for A. lyrata LG1 markers. For LG2 markers, the distances were consistently, but non-significantly, larger in A. lyrata. Given the two species' large DNA content difference, the similarity of map lengths, particularly for LG1, suggests that crossing-over is more frequent across comparable physical distances in the inbreeder, A. thaliana, as predicted.  相似文献   

17.
The evolutionary concurrence of intraspecies self‐incompatibility (SI) and explosive angiosperm radiation in the Cretaceous have led to the hypothesis that SI was one of the predominant drivers of rapid speciation in angiosperms. Interspecies unilateral incompatibility (UI) usually occurs when pollen from a self‐compatible (SC) species is rejected by the pistils of a SI species, while the reciprocal pollination is compatible (UC). Although this SI × SC type UI is most prevalent and viewed as a prezygotic isolation barrier to promote incipient speciation of angiosperms, comparative evidence to support such a role is lacking. We show that SI × SI type UI in SI species pairs is also common in the well‐characterized accessions representing the four major lineages of the Arabidopsis genus and is developmentally regulated. This allowed us to reveal a strong correlation between UI strength and species divergence in these representative accessions. In addition, analyses of a SC accession and the pseudo‐self‐compatible (psc) spontaneous mutant of Arabidopsis lyrata indicate that UI shares, at least, common pollen rejection pathway with SI. Furthermore, genetic and genomic analyses of SI × SI type UI in A. lyrata × A. arenosa species pair showed that two major‐effect quantitative trait loci are the stigma and pollen‐side determinant of UI, respectively, which could be involved in heterospecies pollen discrimination. By revealing a close link between UI and SI pathway, particularly between UI and species divergence in these representative accessions, our findings establish a connection between SI and speciation. Thus, the pre‐existence of SI system would have facilitated the evolution of UI and accordingly promote speciation.  相似文献   

18.
We describe the structure of an Arabidopsis thaliana genomic clone containing two classes of repetitive DNA elements derived from the centromere region of chromosome 1. One class is comprised of tandem arrays of a highly reiterated repeat containing degenerate telomere sequence motifs. Adjacent to these telomere-similar repeats we found a dispersed repetitive element reiterated approximately five times in the A. thaliana genome. The nucleotide sequence of the dispersed repeat is unusual, being extremely AT-rich and composed of numerous, overlapping repeat motifs.  相似文献   

19.
The species within the now well-defined Arabidopsis genus provide biological materials suitable to investigate speciation and the development of reproductive isolation barriers between related species. Even within the model species A. thaliana, genetic differentiation between populations due to environmental adaptation or demographic history can lead to cases where hybrids between accessions are non-viable. Experimental evidence supports the importance of genome duplications and genetic epistatic interactions in the occurrence of reproductive isolation. Other examples of adaptation to specific environments can be found in Arabidopsis relatives where hybridization and chromosome doubling lead to new amphidiploid species. Molecular signals of speciation found in the Arabidopsis genus should provide a better understanding of speciation processes in plants from a genetic, molecular and evolutionary perspective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号