首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In isotonic buffer, IgE receptor-mediated exocytosis from rat basophilic leukemia cells is dependent on extracellular Ca2+, with half-maximal degranulation requiring 0.4 mM Ca2+. No significant exocytosis occurs in the absence of extracellular Ca2+. This absolute requirement for Ca2+ is eliminated by suspending the cells in a hypotonic buffer containing 60 to 80 mM K+; Na+ cannot substitute for K+. Optimal Ca2(+)-independent exocytosis occurs in a buffer containing 20 mM dipotassium Pipes, pH 7.1, 40 mM KCl, 5 mM glucose, 7 mM Mg acetate, 0.1% BSA, and 1 mM EGTA. The cells maintain this Ca2(+)-independent exocytosis even if they are preincubated with 1 mM EGTA for 40 min at 37 degrees C before triggering. Exocytosis is eliminated as isotonicity is approached by adding sucrose, NaCl, KCl, or potassium glutamate to the buffer. Quin 2 fluorescence measurements reveal only a very small rise in [Ca2+]i when the cells are triggered in hypotonic buffer in the absence of extracellular Ca2+ and the presence of 1 mM EGTA. In isotonic buffer, degranulation does not occur under conditions that lead to such a small rise in [Ca2+]i. Sustained IgE receptor-mediated phosphatidylinositol hydrolysis, which is also Ca2+ dependent in isotonic buffer, becomes independent of Ca2+ in the hypotonic buffer. In fact, the rate of phosphatidylinositol hydrolysis in hypotonic buffer in the absence of Ca2+ (and presence of 1 mM EGTA) is twice that observed in isotonic buffer in the presence of 1 mM Ca2+. These data show that in hypotonic buffer, the requirement of IgE receptor-mediated PI hydrolysis for extracellular Ca2+ is eliminated, and degranulation proceeds with a [Ca2+]i of 0.1 microM, the baseline level of [Ca2+]i found in resting cells. These results are consistent with the hypothesis that, in isotonic buffer, the Ca2+ requirement for mast cell degranulation is for the generation of second messengers via hydrolysis of membrane phosphatidylinositols.  相似文献   

2.
Widespread experience indicates that application of suboptimal concentrations of stimulating ligands (secretagogues) to secretory cells elicits submaximal extents of secretion. Similarly, for permeabilized secretory cells, the extent of secretion is related to the concentration of applied intracellular effectors. We investigated the relationship between the extent of secretion from mast cells (assessed as the release of hexosaminidase) and the degranulation (exocytosis) responses of individual cells. For permeabilized mast cells stimulated by the effector combination Ca2+ plus GTP-gamma-S and for intact cells stimulated by the Ca2+ ionophore ionomycin, we found that exocytosis has the characteristics of an all-or-none process at the level of the individual cells. With a suboptimal stimulus, the population comprised only totally degranulated cells and fully replete cells. In contrast, a suboptimal concentration of compound 48/80 applied to intact cells induced a partial degree of degranulation. This was determined by observing the morphological changes accompanying degranulation by light and electron microscopy and also as a reduction in the intensity of light scattered at 90 degrees, indicative of a change in the cell-refractive index. These results may be explained by the existence of a threshold sensitivity to the combined effectors that is set at the level of individual cells and not at the granule level. We used flow cytometry to establish the relationship between the extent of degranulation in individual rat peritoneal mast cells and the extent of secretion in the population (measured as the percentage release of total hexosaminidase). For comparison, secretion was also elicited by applying the Ca2+ ionophore ionomycin or compound 48/80 to intact cells. For permeabilized cells and also for intact cells stimulated with the ionophore, levels of stimulation that generate partial secretion gave rise to bimodal frequency distributions of 90 degrees light scatter. In contrast, a partial stimulus to secretion by compound 48/80 resulted in a single population of partially degranulated cells, the degree of degranulation varying across the cell population. The difference between the all-or-none responses of the permeabilized or ionophore-treated cells and the graded responses of cells activated by compound 48/80 is likely to stem from differences in the effective calcium stimulus. Whereas cell stimulated with receptor-directed agonists can undergo transient and localized Ca2+ changes, a homogeneous and persistent stimulus is sensed at every potential exocytotic site in the permeabilized cells.  相似文献   

3.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

4.
《The Journal of cell biology》1995,131(5):1183-1192
At fertilization in sea urchin eggs, elevated cytosolic Ca2+ leads to the exocytosis of 15,000-18,000 1.3-microns-diam cortical secretory granules to form the fertilization envelope. Cortical granule exocytosis more than doubles the surface area of the egg. It is thought that much of the added membrane is retrieved by subsequent endocytosis. We have investigated how this is achieved by activating eggs in the presence of aqueous- and lipid-phase fluorescent dyes. We find rapid endocytosis of membrane into 1.5-microns-diam vesicles starting immediately after cortical granule exocytosis and persisting over the following 15 min. The magnitude of this membrane retrieval can compensate for the changes in the plasma membrane of the egg caused by exocytosis. This membrane retrieval is not stimulated by PMA treatment which activates the endocytosis of clathrin-coated vesicles. When eggs are treated with short wave-length ultraviolet light, cortical granule exocytosis still occurs, but granule cores fail to disperse. After egg activation, large vesicles containing semi-intact cortical granule protein cores are observed. These data together with experiments using sequential pulses of fluid-phase markers support the hypothesis that the bulk of membrane retrieval immediately after cortical granule exocytosis is achieved through direct retrieval into large endocytotic structures.  相似文献   

5.
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+-dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha-toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact.  相似文献   

6.
Compound versus multigranular exocytosis in peritoneal mast cells   总被引:5,自引:0,他引:5       下载免费PDF全文
We have used the whole-cell patch-pipette technique to measure the step increases in the cell membrane capacitance (equivalent to the membrane area) caused by the fusion of secretory granules in degranulating murine mast cells. We have observed that up to 30% of the total membrane expansion caused by degranulation results from large fusion events that cannot be explained by the fusion of single secretory granules. These large events are observed mainly in the initial phase of a degranulation. We have developed a simple mathematical model for a mast cell to test whether these large events are caused by a stimulus-induced, granule-to-granule fusion that occurs before their exocytosis (multigranular exocytosis). Our results suggest that the large fusion events are caused by the exocytosis of granule aggregates that existed before stimulation and that are located at the cell's periphery. We propose a novel mechanism by which granule aggregates can be formed at the periphery of the cell. This mechanism relies on the ability of a transiently fused granule ("flicker") to fuse with more internally located granules in a sequential manner. This pattern may result in the formation of larger peripheral granules that later on can fuse with the membrane. The formation of peripheral granule aggregates may potentiate a subsequent secretory response.  相似文献   

7.
We measured the concentration of calmodulin required to reverse inhibition by caldesmon of actin-activated myosin MgATPase activity, in a model smooth-muscle thin-filament system, reconstituted in vitro from purified vascular smooth-muscle actin, tropomyosin and caldesmon. At 37 degrees C in buffer containing 120 mM-KCl, 4 microM-Ca2+-calmodulin produced a half-maximal reversal of caldesmon inhibition, but more than 300 microM-Ca2+-calmodulin was necessary at 25 degrees C in buffer containing 60 mM-KCl. The binding affinity (K) of caldesmon for Ca2+-calmodulin was measured by a fluorescence-polarization method: K = 2.7 x 10(6) M-1 at 25 degrees C (60 mM-KCl); K = 1.4 x 10(6) M-1 at 37 degrees C in 70 mM-KCl-containing buffer; K = 0.35 x 10(6) M-1 at 37 degrees C in 120 mM-KCl- containing buffer (pH 7.0). At 37 degrees C/120 mM-KCl, but not at 25 degrees C/60 mM-KCl, Ca2+-calmodulin bound to caldesmon bound to actin-tropomyosin (K = 2.9 x 10(6) M-1). Ca2+ regulation in this system does not depend on a simple competition between Ca2+-calmodulin and actin for binding to caldesmon. Under conditions (37 degrees C/120 mM-KCl) where physiologically realistic concentrations of calmodulin can Ca2+-regulate synthetic thin filaments, Ca2+-calmodulin reverses caldesmon inhibition of actomyosin ATPase by forming a non-inhibited complex of Ca2+-calmodulin-caldesmon-(actin-tropomyosin).  相似文献   

8.
Interaction of protein kinase C with chromaffin granule membranes has been studied as a means of investigating the translocation of protein kinase C from cytosol to intracellular membrane surfaces, which is believed to occur during secretion. Protein kinase C in an adrenal medullary soluble fraction was found to bind reversibly to granule membranes in a Ca2+-dependent fashion. Association and dissociation events were sensitive to Ca2+ concentrations in the low micromolar range, and the Ca2+ sensitivity of both processes was increased when the membranes had been preincubated with the protein kinase C-activating phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (TPA). Binding of protein kinase C to granule membranes occurred at 0 and 37 degrees C, irrespective of whether the membranes had been preincubated with TPA. However, dissociation of protein kinase C from granule membranes that had been preincubated with TPA occurred only at 37 degrees C and not at 0 degree C, even though dissociation of the enzyme from membranes which had not been preincubated with TPA would occur at both 37 and 0 degrees C. These effects of TPA were not reproduced by 4 alpha-phorbol 12,13-didecanoate (4 alpha PDD), a phorbol ester which does not activate protein kinase C. Soluble protein kinase C activity also associated with chromaffin granules in a Ca2+-dependent manner in an adrenal medullary homogenate, indicating that granules can compete with other intracellular membranes for the binding of protein kinase C. Results obtained with this model system differ from other systems where the interaction of protein kinase C with plasma membranes has been studied and have general implications for studies performed on the translocation of protein kinase C in intact cells and for the role of protein kinase C in stimulus-secretion coupling in the chromaffin cell.  相似文献   

9.
We have studied Ag-induced membrane potential changes of rat basophilic leukemia cells by using the potential-sensitive dye, bis-(1,3-diethylthiobarbiturate)trimethineoxonol. A rapid membrane depolarization is triggered by a multivalent Ag, and it has a bell-shaped dose dependence that parallels the degranulation response but not the extent of cross-linking of the IgE-receptor complexes. As the temperature is reduced from 37 degrees C, this depolarization response slows and decreases in magnitude until complete inhibition is observed at 15 degrees C, similar to the temperature dependence previously observed for the Ag-stimulated rise in cytoplasmic Ca2+ and for degranulation. The results imply that a highly temperature-dependent step subsequent to Ag binding and cross-linking is necessary for the depolarization response. A partial return to the resting potential is seen to follow the depolarization response to Ag. This repolarization process is inhibited by quinidine.HCl and Ba2+ in parallel with an inhibition of the degranulation response. Repolarization is not affected by 4-aminopyridine or by the absence of K+ in the external buffer. These data suggest that the repolarization is caused by a previously uncharacterized K+ channel.  相似文献   

10.
Synaptotagmin-1 (syt), the putative Ca2+ sensor for exocytosis, is anchored to the membrane of secretory organelles. Its cytoplasmic domain is composed of two Ca2+-sensing modules, C2A and C2B. Syt binds phosphatidylinositol 4,5-bisphosphate (PIP2), a plasma membrane lipid with an essential role in exocytosis and endocytosis. We resolved two modes of PIP2 binding that are mediated by distinct surfaces on the C2B domain of syt. A novel Ca2+-independent mode of binding predisposes syt to penetrate PIP2-harboring target membranes in response to Ca2+ with submillisecond kinetics. Thus, PIP2 increases the speed of response of syt and steers its membrane-penetration activity toward the plasma membrane. We propose that syt-PIP2 interactions are involved in exocytosis by facilitating the close apposition of the vesicle and target membrane on rapid time scales in response to Ca2+.  相似文献   

11.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

12.
Using [U-14C]phosphatidylinositol as substrate, Ca2+-dependent phospholipase C activity was detected in a group of bovine adrenal medullary proteins that bind to chromaffin granule membranes in the presence of Ca2+ ("chromobindins," Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J. (1983) J. Biol. Chem. 258, 14664-14674). The activity was maximal at neutral pH and represented an 80- to 240-fold enrichment of adrenal medullary cytosol phospholipase C activity measured at pH 7.3. The stimulation of activity by Ca2+ was complex; no activity was present in the absence of Ca2+, 25% activation occurred at 1 microM Ca2+, and full activation at 5 mM Ca2+. The enzyme bound to chromaffin granule membranes in the presence of 2 mM Ca2+ but was released at 40 microM Ca2+, suggesting that intrinsic enzyme activity may be regulated by [Ca2+] at 1 microM, but additional activation at higher concentrations of Ca2+ is seen in vitro as a result of Ca2+-dependent binding of the active enzyme to substrate-containing membranes. This enzyme may generate diacylglycerol and phosphorylated inositol to act as intracellular messengers in the vicinity of the chromaffin granule membrane during the process of exocytosis.  相似文献   

13.
The stabilizing effect of Ca2+ (264.9 mg CaCl2 X 2H2O ml-1) on a 0.5% solution of twice-crystallized bovine trypsin in phosphate-buffered saline (used for harvesting human embryonic lung fibroblasts) was studied at 7-37 degrees C and at -20 and -70 degrees C. It can be concluded that storage of the enzyme in the buffer (with or without Ca2+) is not advisable at temperatures greater than or equal to 20 degrees C. At 7 degrees C, on the other hand, trypsin can be stored for some weeks in the calcium-containing phosphate-buffered saline if a moderate loss of activity is acceptable. At -20 degrees C and -70 degrees C the stability of the enzyme was good. In the presence of Ca2+ about 90% of the activity remained after 18 weeks. Without Ca2+ the activity was approximately 10% lower.  相似文献   

14.
When isolated chromaffin granules were aggregated by synexin (a Ca2+-binding protein present in chromaffin and other secretory tissues) and then exposed to cis-unsaturated fatty acids at 37 degrees C, they fused together to form large vesicles. The fusion was monitored by phase and electron microscopy and by turbidity measurements on the granule suspension. Arachidonic acid was the most effective fusogen, whereas trans-unsaturated fatty acids, saturated fatty acids, detergents or lysolecithin were inactive. During fusion some of the epinephrine of the granules was released but the soluble core proteins remained trapped in the resulting vesicles. These vesicles swelled to enclose the maximum volume. Although this swelling could be inhibited by increasing the osmotic strength of the medium, it did not appear to depend on the chemiosmotic properties of the granule membranes as it was not influenced by ATP, a proton ionophore, or an anion transport inhibitor. The regulators of this in vitro fusion--Ca2+, synexin, and free, cis-unsaturated fatty acids--may be present in the cytoplasm of the chromaffin cell when it is stimulated to release epinephrine and granule proteins by exocytosis. Therefore, this fusion event may be the same that occurs between chromaffin granules undergoing compound exocytosis.  相似文献   

15.
O Nüsse  L Serrander  D P Lew    K H Krause 《The EMBO journal》1998,17(5):1279-1288
We have investigated Ca2+-induced exocytosis from human neutrophils using the whole cell patch-clamp capacitance technique. Microperfusion of Ca2+ buffer solutions (<30 nM to 5 mM free Ca2+) through the patch-clamp pipette revealed a biphasic activation of exocytosis by Ca2+. The first phase was characterized by high affinity (1.5-5 microM) and low apparent cooperativity (<=2) for Ca2+, and the second phase by low affinity (approximately 100 microM) and high cooperativity (>6). Only the second phase was accompanied by loss of myeloperoxidase, suggesting that the low-affinity exocytosis reflected release of peroxidase-positive (primary) granules, while the high-affinity exocytosis reflected release of peroxidase-negative (secondary and tertiary) granules. At submaximal Ca2+ concentrations, only a fraction of a given granule population was released. This submaximal release cannot simply be explained by Ca2+ modulation of the rate of exocytosis, and it suggests that the secretory response of individual cells is adjusted to the strength of the stimulus. The Ca2+ dependence of the high- and low-affinity phases of neutrophil exocytosis bears a resemblance to endocrine and neuronal exocytosis, respectively. The occurrence of such high- and low-affinity exocytosis in the same cell is novel, and suggests that the Ca2+ sensitivity of secretion is granule-, rather than cell-specific.  相似文献   

16.
Human monocyte-derived Interleukin-1 (IL-1) stimulated a concentration-dependent extracellular release of azurophil (myeloperoxidase) and specific (vitamin B12-binding protein) granule constituents from cytochalasin B-treated human neutrophils. The serine protease inhibitors, L-1-tosylamide-2-phenylethyl-chloromethyl ketone (TPCK) and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TPCK) as well as an inhibitor of thiol protease activity, p-hydroxymercuribenzoate (PHMB), suppressed granule enzyme release from neutrophils activated with IL-1. Cycloheximide, an inhibitor of protein synthesis, had no effect on IL-1-induced neutrophil degranulation. Neutrophils pretreated with IL-1 were rendered unresponsive to subsequent exposure to this stimulus. IL-1-elicited granule exocytosis appears to be stimulus specific in that N-formyl-methionyl-leucyl-phenylalanine (FMLP), 1-0-hexadecyl/octadecyl-2-0-acetyl-sn-glyceryl-3-phosphorycholine (AGEPC), and 5(S),12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid (LTB4) were capable of eliciting a secretory response from IL-1-pretreated cells.  相似文献   

17.
CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability.  相似文献   

18.
The activity of Ca-pump in inside-out oriented vesicles obtained from erythrocyte membranes after their 30 min treatment with EGTA at 20 degrees C (membranes A) and 37 degrees C (membranes B) was investigated. It was shown that in membranes A placed into an incubation medium containing 0.1 mM EGTA (pH 7.4) the overall effect of exogenous calmodulin is due to the increase in the maximal activity of the enzyme, its affinity for Ca2+ being unaffected thereby. In membranes B placed into the same medium (pH 6.75) the activation of the Ca-pump by calmodulin is due to the increased affinity for Ca2+ at a constant maximal activity of the enzyme. The dependencies of the value of the calmodulin-stimulated component of membranes A and the Ca2+-binding capacity of calmodulin measured by the intensity of N-phenyl-1-naphthylamine fluorescence on the concentration of free Ca2+ are coincident. In the case of membranes B, the stimulation of Ca-pump by calmodulin occurs at much lower Ca2+ concentrations than the Ca2+ binding-induced conformational shifts in calmodulin. The experimental results suggest that the affinity of the Ca-pump for Ca2+ may affect calmodulin existing in a Ca2+-independent state. The hydrophobic interactions between the Ca-calmodulin complex and the Ca-ATPase molecule are apparently essential for the regulation of the maximal enzyme activity.  相似文献   

19.
Isolation and structure of T-kinin   总被引:8,自引:0,他引:8  
The Ca2+- and calmodulin-dependent myosin light chain kinase of rabbit skeletal muscle was converted to a Ca2+-independent form by limited proteolysis with alpha-chymotrypsin. The conditions prevailing during proteolysis are important and the loss of Ca2+-dependence was achieved best by hydrolysis of the Ca2+-calmodulin-kinase complex. The lack of Ca2+- and calmodulin-dependence was found using both myosin and isolated light chains as substrates. The specific activity of the Ca2+-independent form (Mr approximately 65,000) was similar to that of the native enzyme, i.e., 2 to 5 mumol phosphate transferred min-1 mg-1 kinase. The 65,000-dalton fragment was phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and approximately 0.8 moles phosphate were incorporated per fragment.  相似文献   

20.
We have examined the effects of cyclosporine A (CsA) on a number of CTL effector functions. CsA partially inhibited the CTL-mediated lysis of Ag-bearing target cells. Both target cell- and anti-TCR mAb-induced granule exocytosis were markedly inhibited by CsA. In addition, marked inhibition of PMA and calcium ionophore (A23187) induced granule exocytosis was produced by CsA suggesting that the inhibitory effects of CsA on granule exocytosis involve biochemical events after protein kinase C activation and increases in intracellular free Ca2+. CsA had no inhibitory effects on TCR-mediated phosphatidylinositol metabolism. The inhibitory effects of CsA were not mediated by the cAMP-dependent protein kinase inhibitory pathway and no effect of CsA on the Ca2+-induced binding of calmodulin to calmodulin-binding proteins could be demonstrated. CsA was also a potent inhibitor of IgE receptor-mediated exocytosis in rat basophil leukemia cells. CsA had no effect on receptor-mediated phosphatidylinositol hydrolysis; 400 ng/ml CsA resulted in a 90% inhibition of serotonin release but had no effect on phosphatidylinositol hydrolysis. These results indicate that CsA may inhibit some common event in Ca2+-dependent secretory cells. Taken together, these results suggest that CsA does not inhibit signal transduction but rather interferes with the biochemical events in the later stages of Ca2+-dependent reactions that follow the binding of calmodulin to cytoskeletal or cytoplasmic calmodulin binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号