首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The goal of this study was to find out whether GH or insulin regulate the mRNA expression of the fetal binding protein of insulin-like growth factor (IGFBP-2). Primary hepatocytes from adult rats were used as a test system. IGFBP-2 mRNA was abundant in cells cultured in the absence of hormones and markedly reduced in cultures containing insulin. Addition of GH had no effect on IGFBP-2 mRNA levels although the cells are responsive to GH as demonstrated by a GH mediated elevation of IGF l mRNA levels. Half-maximal down-regulation of IGFBP-2 mRNA levels occurred at an insulin concentration of 1 to 2 x 10(-10) M. The finding that insulin is a potent negative regulator of hepatic IGFBP-2 mRNA levels suggests a physiologically important regulatory link between the two hormones insulin and IGF l.  相似文献   

4.
In the present study, we have sought to determine whether a given signal transduction pathway can have diverse effects on subpopulations of cells of a lineage depending upon the stage of differentiation. To test this hypothesis, we selected the cyclic adenosine monophosphate (cAMP) signal transduction pathway because of its recognized importance in mediating the actions of many hormones, e.g., parathyroid hormone which acts on the bone-forming cells, the osteoblasts. Subpopulations of human osteosarcoma SaOS-2 cells with low (LSaOS) and high (HSaOS) alkaline phosphatase (ALP) content were chosen as model systems for preosteoblasts (pre-OB) and osteoblasts (OB), respectively. Dibutyryl cyclic AMP (DBcAMP) treatment of serum free cultures produced a differential effect on the proliferation of LSaOS cells (40 ± 5% of control at 1 mM DBcAMP, P < 0.001) compared with HSaOS cells (no statistically significant effect). The finding supports the hypothesis. Next, we sought evidence for mediation, at least in part, by the insulin-like growth factor (IGF)-II regulatory system. We report that the basal expression of IGF-II, IGF binding protein (IGFBP)-3, and IGFBP-4 was higher in LSaOS cells than in HSaOS cells with the opposite true for type I IGF receptor. DBcAMP treatment of LSaOS cells decreased IGF-II and IGFBP-3 but increased IGFBP-4 and type I IGF receptor; no effect was observed for the type II IGF receptors. DBcAMP treatment of HSaOS cells had no detectable effect on IGF-II; IGFBP-3, or type I and type II IGF receptor expression; only IGFBP-4 expression increased with DBcAMP. These observations suggest that the differential regulation of cell proliferation by the cAMP signal transduction pathway may be mediated, at least in part, by the IGF-II regulatory system. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

6.
7.
During perinatal development, the regulation of IGF system appears to be growth hormone (GH) independent. By using highly purified primary fetal hepatocytes, we investigated the role of prolactin (PRL) in the regulation of IGF system and hepatocyte proliferation. We also analyzed the consequence of a maternal low-protein (LP) diet on the regulation of IGF, IGF-binding protein (IGFBP), and hepatocyte proliferation by prolactin. Pregnant Wistar rats were fed a control (C) diet (20% protein) or isocaloric (LP; 8%) diet throughout gestation. On day 21.5, fetal hepatocytes were cultured for 4 days and incubated with rat prolactin. In the C hepatocytes, PRL at 100 ng/ml decreased the abundance of IGFBP-1 and IGFBP-2 by 50 (P < 0.05) and 60% (P < 0.01), respectively. It also reduced by 70% the level of IGF-II mRNA (P < 0.01). By contrast, PRL failed to modulate IGFBP-1 and IGFBP-2 production by LP hepatocytes, and this was associated with reduced abundance of the short form of PRL receptor (P < 0.05). PRL had no effect on either the proliferation or the IGF-I production by C and LP hepatocytes, although it reduced the expression of IGF-II. These results suggest that prolactin influences hepatocyte proliferation in vitro by inhibiting IGFBP-1, IGFBP-2, and IGF-II levels, which may coincide with the decline of IGF-II observed in rodents during late gestation in vivo. On the other hand, maternal LP diet induces a resistance of fetal hepatocytes to PRL.  相似文献   

8.
The insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs), which regulate IGF activity, play a fundamental role in renal cell proliferation and differentiation. The thyroid hormone is considered to be required for kidney development; excess induces local hypertrophy and hyperplasia. The aim of the present study was to investigate the possible involvement of the IGF/IGFBP system in thyroid hormone-induced renal growth during the development of the rat. Our results show that thyroid hormone withdrawal by 6-propyl-2-thiouracil (PTU)-treatment of rats at all ages had no effect on renal IGFBP-4 mRNA levels, whereas the abundance of the serum protein was decreased compared to controls. Intraperitoneal triiodothyronine (T3) administration to hypothyroid rats resulted in renal hypertrophy associated with a significant upregulation of IGFBP-4 expression with increased levels of renal IGFBP-4 mRNA and serum protein. T3-induced upregulation of IGFBP-4 expression suggests the involvement of the local IGF/IGFBP system in T3-induced renal hypertrophy.  相似文献   

9.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen and glycosaminoglycan (GAG) biosynthesis in tissues. IGF-I activity is modulated by a family of IGF-binding proteins (IGFBPs) with different IGF-I binding affinities. At least IGFBP-1 and IGFBP-2 are known as inhibitors of IGF functions. Some IGFBPs (IGFBP-1, IGFBP-3 and IGFBP-5) may undergo phosphorylation that dramatically increase their affinity for IGF. During fasting of animals there is a significant decrease of the collagen and GAG content of the skin, accompanied by a reduction of plasma IGF-I levels. However, in previous studies we showed that in the skin of fasted rats IGF-I as well as IGFBP-1 and IGFBP-2 expressions were not different, compared to control rat skin, although collagen content was significantly decreased. In the present study we show that fasted rat skin contains similar amounts of IGF-I, IGFBP-3 and IGFBP-1, although extract from fasted rat skin induced inhibition of collagen biosynthesis in cultured fibroblasts, compared to control rat skin extract. Western immunoblot analysis of control and fasted rat skin extracts, using anti-phosphoserine antibodies for immunoprecipitated IGFBP-1 and IGFBP-3, revealed that both proteins are present in phosphorylated form. Although no differences were found in the expression of phosphorylated IGFBP-3 between control and fasted rat skins, that of phosphorylated IGFBP-1 in fasted rat skin extract was higher than in control one. We suggest that there is an increased level of IGFBP-1 phosphoisoform in fasted rat skin, associated with increased affinity for IGF-I. The increase of phosphorylated IGFBP-1 in fasted rat skin tissue may augment IGF-I binding affinity for IGF and decrease its bioavailability for receptor interaction. This mechanism may prevent IGF-I dependent stimulation of fibroblasts to produce extracellular matrix components. The specific expression of IGFBPs and their phosphoisoforms in tissues may play an important role in regulation of IGF-I action during physiologic and pathologic responses.  相似文献   

10.
In the circulation, most of IGFs are bound to a high molecular mass complex of 150 kDa that consists of IGF-I (or IGF-II), IGFBP-3 and the acid-labile subunit (ALS). Within rat liver, biosynthesis of these components has been localized to different cell populations with hepatocytes as source of ALS and nonparenchymal cells (endothelial and Kupffer cells (KC)) as source of IGFBP-3. In the present study, the regulatory effects of the cAMP analogs dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP (8-br-cAMP) on IGF-I, ALS, and IGFBP expression were evaluated in primary cultures of rat hepatocytes, KC as well as in cocultures of hepatocytes and KC. In cocultures, biosynthesis of IGFBP-3 and ALS was inhibited dose-dependently by db-cAMP and 8-br-cAMP while that of IGF-I, IGFBP-1, and -4 was stimulated as demonstrated by ligand and Northern blotting. IGFBP-3 expression in primary cultures of pure KC did not respond to cAMP treatment indicating the importance of a cellular interaction between KC and hepatocytes for the decreased IGFBP-3 synthesis. The inhibition of IGFBP-3 in db-cAMP-treated cocultures was due to a decrease of IGFBP-3 mRNA level accompanied by a reduced cellular degradation of IGFBP-3. We conclude that cAMP stimulate the biosynthesis of IGF-I, IGFBP-1, and -4 in cocultures of hepatocytes and KC thereby enabling the formation of binary IGF/IGFBP complexes while the formation of the 150 kDa complex is impaired through downregulation of IGFBP-3 and ALS. This complex regulation may be a prerequisite for the effects of cAMP-dependent hormones on the transfer of IGFs from circulation to peripheral tissues.  相似文献   

11.
12.
13.
Insulin-like growth factor (IGF) signaling is critical for osteoblast development and IGF binding protein (IGFBP)-4 is one of the principle IGFBPs expressed by osteoblasts. Release of bound IGF via proteolytic degradation of IGFBP-4 is likely to be critical for osteoblast development. We have investigated whether IGF-sensitive, IGFBP-4 degradation in mouse MC3T3-E1 osteoblasts is due to the metzincin pregnancy-associated plasma protein (PAPP)-A. Degradation of IGFBP-4 by PAPP-A or MC3T3-E1 conditioned medium was enhanced by IGF-II but inhibited by mutation of basic residues at or near the PAPP-A cleavage site in IGFBP-4. Furthermore, immunodepletion of PAPP-A from MC3T3-E1 conditioned medium abolished IGFBP-4 degradation. We also found that PAPP-A messenger RNA was expressed throughout differentiation of MC3T3-E1 cells. These results demonstrate for the first time that PAPP-A is the IGFBP-4 protease in MC3T3-E1 cells, a widely used model for osteoblast development, and that PAPP-A may regulate IGF release throughout osteoblast differentiation.  相似文献   

14.
The insulin-like growth factor type 1 receptor (IGF 1R) mediates the acute metabolic effects of IGF I as well as IGF I-stimulated cell proliferation and protection from apoptosis. IGF binding proteins (IGFBPs) can modulate these responses. We, therefore, investigated whether intrinsic IGFBPs interfere with IGF I-induced regulation of IGF 1R expression and with the biological response to IGF I in two human tumor cell lines, the non-small-cell lung cancer cell line A549 and the osteoblastic osteosarcoma cell line Saos-2/B-10. We compared the growth rates, IGFBP production, IGF I binding characteristics, IGF 1R protein and mRNA levels, and the acute IGF I response (stimulation of glycogen synthesis) after pretreatment of the cells in serum-free medium with or without added IGF I or medium supplemented with 5% fetal calf serum (FCS). In contrast to A549 cells, which produce IGF I and significant amounts of IGFBPs, survival and proliferation of Saos-2/B-10 cells, which do not produce IGF I or significant amounts of IGFBPs, depended on the addition of exogenous IGF I. IGF I increased the concentration of IGFBP-2 and -3 and decreased the concentration of IGFBP-4 in the medium of A549 cells. As compared to FCS, IGF I pretreatment in both cell lines decreased the number of specific IGF I binding sites, down-regulated total and membrane IGF 1R protein, and largely reduced or abolished the acute IGF I response without affecting IGF 1R mRNA levels. The data suggest that the IGF 1R protein of the two cell lines is translationally and/or posttranslationally down-regulated by its ligand in the presence and in the absence of locally produced IGFBPs and that the cell lines have retained this negative feedback to counteract IGF I stimulation.  相似文献   

15.
The effects of dexamethasone (Dex) on insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 production were investigated in primary cultures of rat hepatocytes. Dex enhanced the secretion of IGFBP-1 as measured by ligand blot analysis but did not show any prominent effect on immunoreactive IGF-I secretion. EC50 of Dex on IGFBP-1 secretion was calculated to be 3 x 10(-8) M. The content of IGFBP-1 mRNA in the cells increased greatly in the presence of Dex but the IGF-I mRNA content did not change significantly under the same conditions. Insulin showed the opposite effect of Dex by decreasing the production of IGFBP-1 and the cellular content of IGFBP-1 mRNA. This effect of insulin was observed also with Dex in the medium. These results show that the gene expression of IGF-I and IGFBP-1 is differently regulated by glucocorticoids and insulin in primary cultures of rat hepatocytes. The results most possibly explain the in vivo effects of glucocorticoids and insulin in regulation of IGF-I and IGFBP-1 production by liver.  相似文献   

16.
Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts.  相似文献   

17.
18.
19.
IGFBP-3 is the predominant IGFBP in serum and the major IGFBP secreted by osteoblasts. Native and recombinant IGFBP-3 and a truncated form lacking the carboxyterminal third were tested for their effects on 2 osteoblastic cell lines. Intact but not truncated IGFBP-3 blocked IGF I-stimulated DNA and glycogen synthesis. Inhibition was dose-dependent and found whenever the concentration of intact IGFBP-3 exceeded the concentration of IGF I. Truncated IGFBP-3 appears to result from proteolytic cleavage and does occur in vivo. The loss of inhibition by IGFBP-3 may be regulated at the site of IGF target cells and thus be essential for IGF I-induced osteoblast growth.  相似文献   

20.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号