首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The gigaohm seal technique was used to study ion permeation through acetylcholine-activated channels in cell-attached patches of the extrajunctional membrane of chronically denervated, enzyme-treated cells from the sartorius muscle of the toadBufo marinus. The most frequently occurring channel type (>95% of channel openings), provisionally classified as extrajunctional, had a chord conductance of approximately 25 pS under normal conditions (–70 mV, 11°C, Normal Toad Ringer's). The less frequently observed channel type (<5% of channel openings), classified as a junctional type, had a conductance of 35 pS under the same conditions, and a similar null potential. In many patches, a small percentage (usually <2%) of openings of the extrajunctional channel displayed a lower conductance state. The shape of theI–V curves obtained for the extrajunctional channel dependend on the predominant extracellular cation. For Cs and K, theI–V curves were essentially linear over the voltage range +50 to –150 mV across the patch, suggesting that the potential independent component of the energy profile within the channel was symmetrical. For Li, theI–V curve was very nonlinear, displaying a significant sublinearity at hyperpolarized potentials. Both an electrodiffusion and a symmetrical uniform four-barrier, three-site rate-theory model provided reasonable fits to the data, whereas symmetrical two-barrier, single-site rate-theory models did not. For the alkali cations examined, the relative permeability sequence wasP Cs>P K>P Na>P Li—a proportional selectivity sequence. This was different from the single channel conductance sequence which was found to be K> Cs> Na> Li implying that ions do not move independently through the channel. The relative binding constant sequence for the channel sites was found to be a polarizability sequence, i.e.,K Li>K Cs>K Na>K K There was an inverse relationship for the cations examined. Under conditions when the single-channel conductance was relatively high, the conductance at depolarized potentials was lower than that predicted by both electrodiffusion and rate theory models, suggesting that there was a rate-limiting access step for ions, from the intracellular compartment into the channel.  相似文献   

2.
1. The lipid bilayer technique was used to characterize the biophysical and pharmacological properties of several ion channels formed by incorporating amyloid beta protein fragment (AP) 1–40 into lipid membranes. Based on the conductance, kinetics, selectivity, and pharmacological properties, the following AP[1–40]-formed ion channels have been identified: (i) The AP[1–40]-formed bursting fast cation channel was characterized by (a) a single channel conductance of 63 pS (250/50 mM KCl cis/trans) at +140 mV, 17 pS (250/50 mM KCl cis/trans) at –160 mV, and the nonlinear current–voltage relationship drawn to a third-order polynomial, (b) selectivity sequence P K > P Na > P Li = 1.0:0.60:0.47, (c) Po of 0.22 at 0 mV and 0.55 at +120 mV, and (d) Zn2+-induced reduction in current amplitude, a typical property of a slow block mechanism. (ii) The AP[1–40]-formed spiky fast cation channel was characterized by (a) a similar kinetics to the bursting fast channel with exception for the absence of the long intraburst closures, (b) single channel conductance of 63 pS (250/50 KCl) at +140 mV 17 pS (250/50 KCl) at –160 mV, the current–voltage relationship nonlinear drawn to a third-order polynomial fit, and (c) selectivity sequence P Rb > P K > P Cs > P Na > P Li = 1.3:1.0:0.46:0.40:0.27. (iii) The AP[1–40]-formed medium conductance channel was charcterized by (a) 275 pS (250/50 mM KCl cis/trans) at +140 mV and 19 pS (250/50 mM KCl cis/trans) at –160 mV and (b) inactivation at Vms more negative than –120 and more positive than +120 mV. (iv) The AP[1–40]-formed inactivating large conductance channel was characterized by (a) fast and slow modes of opening to seven multilevel conductances ranging between 0–589 pS (in 250/50 mM KCl) at +140 mV and 0–704 pS (in 250/50 mM KCl) at –160 mV, (b) The fast mode which had a conductance of <250 pS was voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.2 s at +36 mV. The slow mode which had a conductance of >250 pS was also voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.0 s at –76 mV, (c) the value of P K/P choline for the fast mode was 3.9 and selectivity sequence P K > P Cs > P Na > P Li = 1.0:0.94:0.87:0.59. The value of P K/P choline for the slow mode was 2.7 and selectivity sequence P K > P Na > P Li > P Cs = 1.0:0.59:0.49:0.21, and (d) asymmetric blockade with 10 mM Zn2+-induced reduction in the large conductance state of the slow mode mediated via slow block mechanism. The fast mode of the large conductance channel was not affected by 10 mM Zn2+.2. It has been suggested that, although the bursting fast channel, the spiky fast channel and the inactivating medium conductance channel are distinct, it is possible that they are intermediate configurations of yet another configuration underlying the inactivating large conductance channel. It is proposed that this heterogeneity is one of the most common features of these positively-charged cytotoxic amyloid-formed channels reflecting these channels ability to modify multiple cellular functions.3. Furthermore, the formation of -sheet based oligomers could be an important common step in the formation of cytotoxic amyloid channels.  相似文献   

3.
Three classes of inner mitochondrial membrane (IMM) channel activities have been defined by direct measurement of conductance levels in membranes with patch clamp techniques in 150 mM K Cl. The 107 pS activity is slightly anion selective and voltage dependent (open with matrix positive potentials). Multiple conductance channel (MCC) activity includes several levels from about 40 to over 1000 pS and can be activated by voltage or Ca2+. MCC may be responsible for the Ca2+-induced permeability transition observed with mitochondrial suspensions. A low conductance channel (LCC) is activated by alkaline pH and inhibited by Mg2+. LCC has a unit conductance of about 15 pS and may correspond to the inner membrane anion channel, IMAC, which was proposed from results obtained from suspension studies. All of the IMM channels defined thus far appear to be highly regulated and have a low open probability under physiological conditions. A summary of what is known about IMM channel regulation and pharmacology is presented and possible physiological roles of these channels are discussed.  相似文献   

4.
Previous results on Limulus ventral photoreceptors have suggested that besides inositol trisphosphate, another unknown transmitter may also work in the transduction cascade. This assumption has been supported by the finding of two light-activated channel types. The present report furnishes further evidence of the dual transmitter mechanism in phototransduction by analyzing the kinetic properties and voltage dependency of these cation channels with conductances of 12 pS and 30 pS. Single-channel currents were recorded in Limulus ventral nerve photoreceptors in cell-attached configuration at 14°C. At V m + 80 mV the open-time histograms of both channels were fit best by the sum of two exponentials; time constants (and weights) were: 0.81 ms (0.62) and 6.20 ms (0.38) for the 12 pS channels and 2.38 ms (0.43) and 19.4 ms (0.57) for the 30 pS channels. At this potential the mean open times were 2.7 ms for the 12 pS and 13.3 ms for the 30 pS channels, about two-times larger than at hyperpolarizing potentials. The deactivation kinetics were also different for the two channels. The time constants of the decay of the channel activity, after switching off the light, were 2.5 s for the 12 pS and 12.9 s for the 30 pS channels. The 12 pS channel exhibits bursting and subconductance states at positive potentials. The subconductances are about 20%, 46% and 72% of the fully open state. Results show that the two types of light-activated channels have different kinetic parameters, voltage dependence and gating mechanisms. The two channels are suggested to be gated by different transmitters or processes. It is proposed that for the 30 pS channel the transmitter could be calcium ion or a calcium-dependent transmitter.  相似文献   

5.
We have used a monoclonal antibody (MAb E12), one of several such antibodies raised against theophylline-treated Necturus gallbladder epithelial cells, to isolate a chloride channel protein by the use of an immunoaffinity column and FPLC. This protein (Mr 219,000) has been reconstituted into a planar lipid bilayer, where it behaves as a chloride-selective channel (PCl/PNa = 20.2; PNa/PK = 1) whose unit conductance is 62.4 ± 4.6 pS. Antibody added to the trans side (there is no effect from the cis side) causes channel open probability to drop to virtually zero, but has no effect on the conductance or the selectivity of single channels. To test the role of phosphorylation in the activity of the native channel, we studied the effects of the protein phosphatase inhibitor okadaic acid (OA) on intact gallbladders, and showed that channels opened by theophylline treatment and closed by antibody are reopened reversibly by OA (0.01–1.0 M). Addition of the catalytic subunit of protein phosphatase 2A (PP-2A) to the cis side of a bilayer containing reconstituted chloride channels caused closure of the channels after a delay, and subsequent addition of ATP and the catalytic subunit of cAMP-dependent protein kinase (PKA) caused immediate reopening. These data indicate that (a) this chloride channel protein inserts in a directed way into the bilayer such that the cis side is intracellular, (b) the purified channel protein is phosphorylated, and (c) gating from the cellular side is controlled by the direct phosphorylation and dephosphorylation of the channel protein.  相似文献   

6.
Single channel currents of chloramine-T (Chl-T) and sea anemone toxin (ATX-II) modified sodium channels were studied in neuroblastoma cells. With both substances similar subconductance states have been observed. The conductances of the sublevels were multiples of the unit step which was about onefourth of the most frequently occurring main conductance. Thus, the current levels observed were one fourth, half and five-fourths of the main current size. Both substances caused a slower decay of the averaged current compared to the current of the native channels. The main single-channel conductance was 15.2 pS (T=16°C) for the Chl-T and 10.8 pS (T=12°C) for the ATX-II modified channels. The channel open time was doubled by ATX-II, but was not increased significantly by Chl-T. The existence of the subconductance states suggests that the native channels may also have multiple open conformations.  相似文献   

7.
Large conductance channels were observed in the membrane of cultured cardiac cells of newborn rats studied with the patch-clamp technique in cell-attached and inside-out configurations. These channels were observed in 4% of the patches. In the cell-attached configuration they exhibited outward rectification and partial inactivation. In the inside-out configuration no rectification occurred but inactivation was present, mainly during hyperpolarizations. Two channels with large single unit conductances (400–450 pS) and one with a smaller conductance (200–250 pS) were frequently observed in the same patch. The two large channels generally had different kinetics. Under steady-state conditions the opening probability of the faster channel appeared to be voltage-independent. The slower channel was activated by depolarization. In asymmetrical solutions the permeability ratios P Na/P Cl were 0.03 and 0.24 for the larger and smaller channels, respectively; corresponding values for P Ba/P Cl were 0.04 and 0.09. It is proposed that in cardiac membranes the chloride permeability system is composed of widely dispersed microclusters forming grouped channels of different types and sizes.  相似文献   

8.
Summary The early phase of activation of the inward-rectifying potassium channel is studied on single cells from guinea-pig heart. The current is quasi-instantaneous when it is outward, but activates with time when it is inward. This relaxation is exponential and its time-constant decreases with hyperpolarization. TheI/V curve reflects a strong inward rectification and has a negative slope conductance on depolarization. Similar results were recorded in the absence of sodium, calcium, chloride ions and in isotonic potassium. Cesium slows down the phase of activation, and eventually appears to block the channels by suppression of the activation. Barium, conversely, does not affect the activation, but promotes an inactivation of this current, which blocks it. These results are independent on the cells' dissociation method. They suggest that this current is the inward rectifier, calledI K1 on heart. Its activation curve suggests that the inward and outward currents are flowing through the same channels. The inward rectifier is time-and voltage-dependent on heart as on other tissues. The effects of cesium and barium are also similar. The importance of its negative slope conductance is discussed.  相似文献   

9.
Summary The present study has been performed to test for the effect of intracellular calcium and of serotonin on the channel activity in patches from subconfluent MDCK-cells. In inside-out patches, inwardly rectifying potassium-selective channels are observed with open probabilities of 0.01±0.01, 0.24±0.03 and 0.39±0.07, at 100 nmol/liter, 1 mol/liter or 10 mol/liter calcium activity, respectively. The single-channel slope conductance is 34±2 pS, if the potential difference across the patch (V ) is zero, and approaches 59±1 pS, ifV is –50 mV, cell negative. In the cell-attached mode, little channel activity is observed prior to application of serotonin (open probability=0.03±0.03). If 1 mol/liter serotonin is added to the bath perfusate, the open probability increases rapidly to a peak value of 0.34±0.04 within 8 sec. In continued presence of the hormone, the open probability declines to approach 0.06±0.02 within 30 sec. At zero potential difference between pipette and reference in the bath (i.e., the potential difference across the patch is equal to the potential difference across the cell membrane), the single-channel conductance is 59±4 pS. In conclusion, inwardly rectifying potassium channels have been identified in the cell membrane of subconfluent MDCK-cells, which are activated to a similar extent by increase of intracellular calcium activity to 1 mol/liter and by extracellular application of 1 mol/liter serotonin.  相似文献   

10.
Using the patch clamp technique, we have characterized a small conductance, calcium-activated potassium (SK) channel in the C6 glioma cell line. Elevation of cytosolic Ca2+ concentration ([Ca2+] i ) by applications of serotonin or ionomycin induced bursts of channel openings recorded in the cell-attached configuration. These channels underlie the serotonin-induced, [Ca2+] i -activated whole-cell K+ conductance described previously. [Ca2+] i directly activated SK channels in inside-out patches with a biphasic concentration dependence. Submicromolar [Ca2+] i induced bursts of channel openings with a unitary conductance of about 25 pS, similar to that of the serotonin-induced channels. Supramicromolar [Ca2+] i caused prolonged openings with a unitary conductance of about 35 pS, resulting in a pronounced increase of the average current in patches exposed to [Ca2+] i above 100 m. The two modes of opening reflect the activity of the same SK channel. The channel conductance depended on external K+ concentration with K Dof 5 m. The channel was slightly permeable to cations other than K+, with a permeability ratio for K+Ca2+Na+ of 10.0400.030, respectively. ATP was required to maintain channel activity in outside-out patches but was not essential in inside-out patches. The modulation of SK channels in C6 cells by components in their microenvironment may be related to the role of glial cells in controlling the extracellular milieu in the CNS.The authors are grateful to Dr. M. Segal for continuous support, stimulating discussions and criticism throughout the course of this work, to Dr. I. Steinberg for helpful suggestions and to Dr. H. Jarosch, for helping with the Fortran application. N.M.'s research was supported in part by BARD, the U.S.-Israel Binational Agricultural Research and Development Fund, grant no. IS-1670-89RC.  相似文献   

11.
Summary Proteolipids extracted from bovine kidney plasma membrane induce irreversible changes in the electrical properties of lipid bilayers formed from diphytanoyl phosphatidylcholine. The interaction with the proteolipid produces channels which are cation selective. At low protein concentrations (i.e., <0.6 g/ml), the single-channel conductance is approximately 10 pS in 100mm KCl and 3 pS in 100mm NaCl. In the presence of protein concentrations above 1 g/ml, another population of channels appears. These channels have a conductance of about 100 pS in 100mm KCl and 30 pS in 100mm NaCl. Further, these channels are voltage dependent in KCl, closing when the voltage is clamped at values 30 mV. The steady-state membrane conductance, measured at low voltages, was found to increase proportional to a high power (2–3) of the proteolipid concentration present in one of the aqueous phases. In 100mm NaCl, the conductance increases at protein concentrations above 5 g/ml, whereas in 100mm KCl in increases at protein concentrations above 0.6 g/ml. These measurements indicate that the higher steady-state conductance observed in KCl at a given proteolipid concentration in a multi-channel membrane presumably results because more channels incorporate in the presence of KCl than in the presence of NaCl.The two major fractions which comprise the proteolipid complex were also tested on bilayers. It was found that both fractions are required to produce the effects described.  相似文献   

12.
Light-activated single channel currents were measured in Limulus ventral photoreceptors in the cell-attached configuration at 14°C. The results show three channel types with conductances of 6.2, 10.4 and 28.7 pS. The most active channels have the 10 pS conductance; the open time histograms of these channels could be best fitted by the sum of two exponentials with time constants (and weights) of 0.58 ms (0.78) and 4.32 ms (0.22), suggesting two populations of channels or two open states. The mean open time was 1.38 ms. The open time histogram of the channels with the 29 pS conductance could be best fitted by a single exponential with a time constant of 3.35 ms. First latencies of the 10 pS channels were between 40 and 280 ms but those of the 29 pS conductance channels were 300 ms. These findings suggest that the two channel types are gated by two different intracellular transmitters or mechanisms. Offprint requests to: K. Nagy  相似文献   

13.
Summary The patch-clamp technique was used to identify and investigate two K channels in the cell membrane of the HIT cell, an insulin secreting cell line with glucose-sensitive secretion. Channel characteristics were compared with those of glucose-modulated K channels in the RINm5F cell, an insulin secreting cell line in which secretion is largely glucose insensitive. A 65.7 pS channel, identified with the ATP-sensitive K channel was seen in HIT cell-attached patches. Channel activity was dose-dependently inhibited by glucose, by 50 and 100% at 450 m and 8mm glucose, respectively, similar to the values previously reported for RIN cells. In inside-out patches channel activity was 50% inhibited by 56 m ATP and completely blocked between 500 m and 1mm, again, similar to the values reported for RIN cells.As in RIN cells a second, considerably larger (184 pS), K channel was glucose sensitive; the glucose sensitivity was similar to that in RIN cells with 50 and 100% channel inhibition at 7.5 and 25mm, respectively. After patch excision the mean channel conductance increased from 184 to 215 pS. Under these conditions activity was strongly calcium dependent in the rangepCa 5–7, identifying this as a calcium- and voltage-dependent K (K(Ca,V)) channel; the calcium sensitivity was similar to that of the adult rat cell K(Ca,V) channel. In inside-out RIN cell patches, the large K channel was less abundant but displayed a similar conductance (223 pS). However, its calcium sensitivity was more than 10 times lower than in HIT cells, similar to that of the K(Ca,V) channel in the neonatal rat cell, which also displays a reduced secretory response to glucose. Based on these observations, it is proposed that the low calcium sensitivity of the K(Ca,V) channel may be causally associated with secretory deficiency in RIN cells and the immature secretory response of the neonatal cell.  相似文献   

14.
Dequalinium has recently been reported to block CNGA1 and CNGA2 channels expressed in Xenopus laevis. Using the inside-out configuration of the patch-clamp technique, we examined the effects of dequalinium on rat olfactory CNGA2 channels expressed in human embryonic kidney (HEK293) cells and studied aspects of its molecular mechanism of action. We found that cytoplasmic dequalinium blocked wild-type (WT) CNGA2 channels in a voltage-dependent manner with an IC50 of approximately 1.3 M at a Vm of + 60 mV, and an effective fractional charge, z, of +0.8 (z=2, =+0.4), suggesting that cytoplasmic dequalinium interacts with a binding site that is about two fifths of the way along the membrane electric field (from the intracellular side). Neutralizing the negatively charged pore lining glutamate acid residue (E342Q) still allows effective channel block by cytoplasmic dequalinium with an IC50 of approximately 2.2 M at a Vm of +60 mV but now having a z of +0.1 (=+0.05), indicating a profoundly decreased level of voltage-dependence. In addition, by comparing the extent of block under different levels of channel activation, we show that the block by cytoplasmic dequalinium displayed clear state-dependence in WT channels by interacting predominantly with the closed channel, whereas the block in E342Q channels was state-independent. Application of dequalinium to the external membrane surface also blocked currents through WT channels and the E342Q mutation significantly increased the IC50 for external block approximately fivefold. These results confirm dequalinium as a potent, voltage-dependent and state-dependent blocker of cyclic-nucleotide-gated channels, and show that neutralization of the E342 residue profoundly affects the block by both cytoplasmic and external application of dequalinium.  相似文献   

15.
Summary Outside-out and inside-out patches of membrane were excised from different muscles of crayfish (Austropotamobius torrentium) and single channel currents elicited by synaptic transmitters and their analogues were measured with the patchclamp technique. If the Cl-concentration was high on both sides of the membrane, glutamate even at concentrations <1 M elicited low amplitude single channel currents, which were identified to be Cl-currents. The same channels were also activated by 10 M GABA. Glutamate and GABA showed competition in activating these inhibitory channels. Amplitude histograms of the single channel currents presented well defined peaks corresponding to 3 channel substatesI 1,I 2 andI 3, with conductances of about(I1)=22 pS in high chloride corresponding to a permeability Cl(I1)=3.5× 10–14 cm3/s),(I2)=2(I1) and(I3)=3(I1). Glutamate activated preferably stateI 1, and GABA stateI 2, but both could activate all states at sufficient concentration. Distributions of the open times in the different states were plotted and could be fitted each with one or two exponentials described by time constants of(I1) of 1 and 6 ms,(I2) of 2 to 3 ms, and(I3) or 1 to 2 ms. The burst durations had components of 3 to 4 and of 30 to 40 ms. All these durations were approximately the same when the channels were activated by glutamate and GABA. The analogue quisqualate of glutamate, as well as the GABA analogue-guanidino propionic acid also elicited the respective patterns of states of the inhibitory channel. Quisqualate is by far the most effective agonist and glutamate is more effective than GABA at the inhibitory receptor. Picrotoxin blocked activation of the inhibitory channel by GABA more effectively than by glutamate. The importance of the activation of the inhibitory channel by glutamate as well as by GABA and their analogues is discussed. Elements of a tentative reaction schema are proposed.  相似文献   

16.
Summary A high-conductance K+-selective ion channel was studied in excised membrane patches from human G292 osteoblast-like osteosarcoma cells. Channel conductance averaged 170 pS in symmetric solutions of 153mm KCl, and 135 pS when the pipette was filled with standard saline (150mm NaCl). The probability of the channel being in an open state (P open) increased with membrane potential, internal calcium, and applied negative pressure. At pCa7, channel activity was observed at membrane potentials greater than 60 mV, while at pCa3, channel activity was seen at 10 mV. Likewise, in the absence of applied pressure, channel openings were rare (P open = 0.02), whereas with –3 cm Hg applied pressure,P open increased to 0.40. In each case, i.e., voltage, calcium concentration, and pressure, the increase inP open resulted from a decrease in the duration of long-closed (interburst) intervals and an increase in the duration of long-open (burst) intervals. Whole-cell responses were consistent with these findings. Hypotonic shock produced an increase in the amplitude and conductance of the outward macroscopic current and a decrease in its rise time, and both single-channel and whole-cell currents were blocked by barium. It is suggested that the voltage-gated, calcium dependent maxi-K+ channel in G292 osteoblastic cells is sensitive to membrane stretch and may be directly involved in osmoregulation of these cells. Further, stretch sensitivity o£ the maxi-K+ channel in osteotrophic cells may represent an adaptation to stresses associated with mechanical loading of mineralized tissues.  相似文献   

17.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

18.
Single channel currents were activated by GABA (0.5 to 5 m) in cell-attached and inside-out patches from cells in the dentate gyrus of rat hippocampal slices. The currents reversed at the chloride equilibrium potential and were blocked by bicuculline (100 m). Several different kinds of channel were seen: high conductance and low conductance, rectifying and nonrectifying. Channels had multiple conductance states. The open probability (P o ) of channels was greater at depolarized than at hyperpolarized potentials and the relationship between P o and potential could be fitted with a Boltzmann equation with equivalent valency (z) of 1. The combination of outward rectification and potentialdependent open probability gave very little chloride current at hyperpolarized potentials but steeply increasing current with depolarization, useful properties for a tonic inhibitory mechanism.  相似文献   

19.
Piñeros  Miguel  Tester  Mark 《Plant and Soil》1993,155(1):119-122
Single Ca2+ channel records were obtained from plasma membrane-enriched fractions of wheat roots incorporated into artificial planar lipid bilayers. The channel had a unitary conductance of 15 pS for a 10 to 95 mM CaCl2 gradient (cytoplasm: outside of the cell). The voltage dependence displayed by the channel agreed with that expected for Ca2+ channels in the plasma membrane. The channel gating was strongly modified by addition of 20 M extracellular verapamil (a Ca2+ channel antagonist). Extracellular AlCl3 (70 M, pH 4.9) almost completely blocked the channel.  相似文献   

20.
Large conductance (approximately 210 pS), K+-selective channels were identified in excised, insideout patches obtained from the apical membranes of both ciliated and nonciliated epithelial cells grown as monolayers from the primary culture of rabbit oviduct. The open probability of channels showing stable gating was increased at positive membrane potentials and was sensitive to the concentration of free calcium ions at the cytosolic surface of the patch ([Ca2+] i ). In these respects, the channel resembled maxi K+ channels found in a number of other cell types. The distributions of dwell-times in the open state were most consistently described by two exponential components. Four exponential components were fitted to the distributions of dwelltimes in the closed state. Depolarizations and [Ca2+] i increases had similar effects on the distribution of open dwell-times, causing increases in the two open time constants ( o1 and o2) and the fraction of events accounted for by the longer component of the distribution. In contrast, calcium ions and voltage had distinct effects on the distribution of closed dwelltimes. While the three shorter closed time constants ( c1, c2 and c3) were reduced by depolarizing membrane potentials, increases in [Ca2+] i caused decreases in the longer time constants ( c3 and c4). It is concluded that oviduct large conductance Ca2+-activated K+ channels can enter at least two major open states and four closed states.A.F.J. was supported by a research fellowship from the Japan Society for the Promotion of Science and received a grant for laboratory expenses from the Ministry of Education, Science and Culture, Japan. The authors wish to thank Dr. Shigetoshi Oiki for valuable discussion of the analysis of gating kinetics and Dr. Jeman Kim (Kyoto Pharmaceutical University) for making the transmission electron micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号