首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
G Guarneros  C Portier 《Biochimie》1991,73(5):543-549
We review recent evidence on the in vivo and in vitro mRNA degradation properties of 2 3'-exonucleases, ribonuclease II and polynucleotide phosphorylase. Although secondary structures in the RNA can act as protective barriers against 3' exonucleolytic degradation, it appears that this effect depends on the stability of these structures. The fact that RNase II is more sensitive to RNA secondary structure than PNPase, could account for some differences observed in messenger degradation by the 2 enzymes in vivo. Terminator stem-loop structures are often very stable and 3' exonucleolytic degradation proceeds only after they have been eliminated by an endonucleolytic cleavage. Other secondary structures preceding terminator stem-loop seem to contribute to mRNA stability against exonucleolytic decay.  相似文献   

14.
15.
RNase II is a 3'-5' exoribonuclease that processively hydrolyzes single-stranded RNA generating 5' mononucleotides. This enzyme contains a catalytic core that is surrounded by three RNA-binding domains. At its C terminus, there is a typical S1 domain that has been shown to be critical for RNA binding. The S1 domain is also present in the other major 3'-5' exoribonucleases from Escherichia coli: RNase R and polynucleotide phosphorylase (PNPase). In this report, we examined the involvement of the S1 domain in the different abilities of these three enzymes to overcome RNA secondary structures during degradation. Hybrid proteins were constructed by replacing the S1 domain of RNase II for the S1 from RNase R and PNPase, and their exonucleolytic activity and RNA-binding ability were examined. The results revealed that both the S1 domains of RNase R and PNPase are able to partially reverse the drop of RNA-binding ability and exonucleolytic activity resulting from removal of the S1 domain of RNase II. Moreover, the S1 domains investigated are not equivalent. Furthermore, we demonstrate that S1 is neither responsible for the ability to overcome secondary structures during RNA degradation, nor is it related to the size of the final product generated by each enzyme. In addition, we show that the S1 domain from PNPase is able to induce the trimerization of the RNaseII-PNP hybrid protein, indicating that this domain can have a role in the biogenesis of multimers.  相似文献   

16.
G Guarneros  C Portier 《Biochimie》1990,72(11):771-777
We review recent evidence on the in vivo and in vitro mRNA degradation properties of 2 3'-exonucleases, ribonuclease II and polynucleotide phosphorylase. Although secondary structures in the RNA can act as protective barriers against 3' exonucleolytic degradation, it appears that this effect depends on the stability of these structures. The fact that RNase II is more sensitive to RNA secondary structure than PNPase, could account for some differences observed in messenger degradation by the 2 enzymes in vivo. Terminator stem-loop structures are often very stable and 3' exonucleolytic degradation proceeds only after they have been eliminated by an endonucleolytic cleavage. Other secondary structures preceding terminator stem-loop seem to contribute to mRNA stability against exonucleolytic decay.  相似文献   

17.
A set of plasmids was constructed so as to contain point mutations which limit the efficiency and/or extent of translation of the gene for ribosomal protein S20. These plasmids were transformed into strains carrying mutations in the genes for polynucleotide phosphorylase (pnp-7), RNase E (rne-1), or both. Subsequently, the effect of translational efficiency on mRNA abundance and chemical half-life was determined. The data indicated that mutations altering translational efficiency also affected mRNA levels over a 10-fold range. This variation in mRNA abundance occurred independently of mutations in either RNase E or polynucleotide phosphorylase, both of which determine the stability of the S20 mRNAs. Moreover, a mutation at codon 15 which caused premature termination of translation of the S20 mRNA did not significantly reduce its stability in different genetic backgrounds. We propose a model in which initiation of translation competes for early steps in mRNA turnover, which could be the binding of RNase E itself or as a complex to one or more sites near the 5' terminus of the S20 mRNA.  相似文献   

18.
Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.  相似文献   

19.
20.
F Braun  J Le Derout    P Régnier 《The EMBO journal》1998,17(16):4790-4797
The hypothesis generally proposed to explain the stabilizing effect of translation on many bacterial mRNAs is that ribosomes mask endoribonuclease sites which control the mRNA decay rate. We present the first demonstration that ribosomes interfere with a particular RNase E processing event responsible for mRNA decay. These experiments used an rpsO mRNA deleted of the translational operator where ribosomal protein S15 autoregulates its synthesis. We demonstrate that ribosomes inhibit the RNase E cleavage, 10 nucleotides downstream of the rpsO coding sequence, responsible for triggering the exonucleolytic decay of the message mediated by polynucleotide phosphorylase. Early termination codons and insertions which increase the length of ribosome-free mRNA between the UAA termination codon and this RNase E site destabilize the translated mRNA and facilitate RNase E cleavage, suggesting that ribosomes sterically inhibit RNase E access to the processing site. Accordingly, a mutation which reduces the distance between these two sites stabilizes the mRNA. Moreover, an experiment showing that a 10 nucleotide insertion which destabilizes the untranslated mRNA does not affect mRNA stability when it is inserted in the coding sequence of a translated mRNA demonstrates that ribosomes can mask an RNA feature, 10-20 nucleotides upstream of the processing site, which contributes to the RNase E cleavage efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号