首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to switch between a yeast-like form and a filamentous form is an extended characteristic among several fungi. In pathogenic fungi, this capacity has been correlated with virulence because along the infection process, dimorphic transitions are often required. Two well-known organisms for which dimorphism have been studied are the pathogenic fungi Candida albicans and Ustilago maydis, which infect mammals and corn, respectively. In both cases, several signal transduction pathways have been defined. Not surprisingly, these pathways are similar to the well-known pathways involved in the pseudohyphal differentiation that some Saccharomyces cerevisiae diploid strains show when nutrients are starved. However, in spite of similarities at the molecular level, strikingly, fungi use similar pathways to respond to environmental inputs, but with differing outcomes.  相似文献   

2.
Fungal phytopathogens continue to cause major economic impact, either directly, through crop losses, or due to the costs of fungicide application. Attempts to understand these organisms are hampered by a lack of fungal genome sequence data. A need exists, however, to develop specific bioinformatics tools to collate and analyse the sequence data that currently is available. A web-accessible gene discovery database (http://cogeme.ex.ac.uk/biosynthesis.html) was developed as a demonstration tool for the analysis of metabolic and signal transduction pathways in pathogenic fungi using incomplete gene inventories. Using Bayesian probability to analyse the currently available gene information from pathogenic fungi, we provide evidence that the obligate pathogen Blumeria graminis possesses all amino acid biosynthetic pathways found in free-living fungi, such as Saccharomyces cerevisiae. Phylogenetic analysis was also used to deduce a gene history of succinate-semialdehyde dehydrogenase, an enzyme in the glutamate and lysine biosynthesis pathways. The database provides a tool and methodology to researchers to direct experimentation towards predicting pathway conservation in pathogenic microorganisms.  相似文献   

3.
For more than 40 years fungi have been known to produce pigments known as melanins. Predominantly these have been dihydroxyphenylalanine (DOPA)-melanin and dihydroxynaphthalene (DHN)-melanin. The biochemical and genetical analysis of the biosynthesis pathways have led to the identification of the genes and corresponding enzymes of the pathways. Only recently have both these types of melanin been linked to virulence in some human pathogenic and phytopathogenic fungi. The absence of melanin in human pathogenic and phytopathogenic fungi often leads to a decrease in virulence. In phytopathogenic fungi such as Magnaporthe grisea and Colletotrichum lagenarium, besides other possible functions in pathogenicity, DHN-melanin plays an essential role in generating turgor for plant appressoria to penetrate plant leaves. While the function of melanin in human pathogenic fungi such as Cryptococcus neoformans, Wangiella dermatitidis, Sporothrix schenckii, and Aspergillus fumigatus is less well defined, its role in protecting fungal cells has clearly been shown. Specifically, the ability of both DOPA- and DHN-melanins to quench free radicals is thought to be an important factor in virulence. In addition, in several fungi the production of fungal virulence factors, such as melanin, has been linked to a cAMP-dependent signaling pathway. Many of the components involved in the signaling pathway have been identified.  相似文献   

4.
植物病原真菌的自噬   总被引:1,自引:0,他引:1  
刘伟  杜春梅 《微生物学报》2021,61(11):3363-3376
作为真核生物中普遍存在的现象,自噬不但实现了对细胞内物质的降解和回收利用,而且与植物病原真菌早期侵染阶段的附着胞发育、膨压升高、菌丝体形成、完成侵染等一系列过程密切相关,并且发挥了重要的作用。本文归纳了植物病原真菌自噬的相关基因和自噬过程;总结了自噬对病原真菌生长发育、致病力的调控和影响;概括了病原真菌自噬所涉及的信号通路;阐明了自噬影响植物病原真菌侵染过程的主要分子机制。为今后以自噬相关基因或蛋白作为靶点来筛选抑制病原真菌侵染的新型药物提供新的策略和思路。  相似文献   

5.
Programmed cell death in pathogenic fungi   总被引:2,自引:0,他引:2  
Greater understanding of programmed cell death (PCD) responses in pathogenic fungi may offer a chance of exploiting the fungal molecular death machinery to control fungal infections. Clearly identifiable differences between the death machineries of pathogens and their hosts, make this a feasible target. Evidence for PCD in a range of pathogenic fungi is discussed alongside an evaluation of the capacity of existing antifungal agents to promote apoptosis and other forms of cell death. Information about death related signalling pathways that have been examined in pathogens as diverse as Candida albicans, Aspergillus fumigatus, Magnaporthe grisea and Colletotrichum trifolii are discussed.  相似文献   

6.
Coping with stress: calmodulin and calcineurin in model and pathogenic fungi   总被引:10,自引:0,他引:10  
Calcium signaling via calmodulin and calcineurin is critical for the regulation of stress responses in fungi. The functions of calmodulin and calcineurin are largely conserved among pathogenic fungi and model fungi, however, the mechanisms of action have diverged. Saccharomyces cerevisiae is an excellent model for understanding the framework of calcium-mediated signal transduction pathways, and considerable progress has been made in understanding the details of how Ca(2+)-calmodulin and calcineurin control adaptation to environmental stress. Studies using the divergent human pathogenic fungi Candida albicans and Cryptococcus neoformans reveal that calcineurin is critical for virulence, yet it acts via distinct mechanisms in each fungus. These differences in function may reflect the requirements of each pathogen to survive inside the host, and illustrate that studies must be conducted in each organism in order to elucidate the details of the molecular mechanisms of calmodulin and calcineurin-mediated signaling pathways.  相似文献   

7.
8.
《Fungal Biology Reviews》2018,32(2):86-103
Blue light plays an important role in the growth and development of fungi. Environmental cues enable plant pathogenic fungi to synchronise essential metabolic pathways to that of their hosts to gain a competitive advantage. Phylogenetic analysis of the LOV domain present in blue light receptors across all three kingdoms suggests that these receptors in fungal lineages have undergone convergent evolution to use the same domain for control and regulation of similar cellular and metabolic processes. In this review, the genetic basis of blue light photoperception in fungi, and the functions it regulates, will be discussed. Furthermore, the evolution of the light sensing domain and its role in pathogenesis is hypothesised concluding with how knowledge of conserved LOV domains may be exploited for fungal disease control in crop plants.  相似文献   

9.
10.
Organic acids produced by fungi have been proposed to have many roles in wood-decay processes, lignocellulose degradation or plant pathogenesis involving saprotrophic or pathogenic fungi, as well as in nutrient acquisition and metal detoxification involving mycorrhizal or rhizosphere-inhabiting fungi. In comparison with other fungi, a considerable body of work has been devoted to the comprehension of biosynthesis pathways in fungi involved in industrial production of organic acids, and also in those involved in wood-decay processes and pathogenicity. In this review we therefore focus on information available from these different types of low-molecular weight organic acid (LMWOA) producing fungi in order to better understand the environmental cues involved in regulating production of LMWOAs.  相似文献   

11.
Activation of virulence in pathogenic fungi often involves differentiation processes that need the reset of the cell cycle and induction of a new morphogenetic program. Therefore, the fungal capability to modify its cell cycle constitutes an important determinant in carrying out a successful infection. The dimorphic fungus Ustilago maydis is the causative agent of corn smut disease and has lately become a highly attractive model in addressing fundamental questions about development in pathogenic fungi. The different morphological and genetic changes of U. maydis cells during the pathogenic process advocate an accurate control of the cell cycle in these transitions. This is why this model pathogen deserves attention as a powerful tool in analyzing the relationships between cell cycle, morphogenesis, and pathogenicity. The aim of this review is to summarize recent advances in the unveiling of cell cycle regulation in U. maydis. We also discuss the connection between cell cycle and virulence and how cell cycle control is an important downstream target in the fungus-plant interaction.  相似文献   

12.
MAP kinase pathways as regulators of fungal virulence   总被引:1,自引:0,他引:1  
MAP kinases are dual phosphorylated protein kinases, present in eukaryotes, which mediate differentiation programs and immune responses in mammalian cells. In pathogenic fungi, MAP kinases are key elements that control adaptation to environmental stress. Recent studies have shown that these pathways have an essential role in the control of essential virulence factors such as capsule biogenesis in Cryptococcus neoformans or morphogenesis, invasion and oxidative stress in Candida albicans. Although MAP kinases sense different activating signals, there is a considerable degree of crosstalk and/or overlap, which enables them to integrate, amplify and modulate the appropriate protective and adaptive response. MAP kinases behave as a 'functional nervous system' that controls virulence and influences the progression of the disease.  相似文献   

13.
The regulation of IgA class switching   总被引:1,自引:0,他引:1  
IgA class switching is the process whereby B cells acquire the expression of IgA, the most abundant antibody isotype in mucosal secretions. IgA class switching occurs via both T-cell-dependent and T-cell-independent pathways, and the antibody targets both pathogenic and commensal microorganisms. This Review describes recent advances indicating that innate immune recognition of microbial signatures at the epithelial-cell barrier is central to the selective induction of mucosal IgA class switching. In addition, the mechanisms of IgA class switching at follicular and extrafollicular sites within the mucosal environment are summarized. A better understanding of these mechanisms may help in the development of more effective mucosal vaccines.  相似文献   

14.
Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum graminicola and Fusarium graminearum. Among all tested terpenoids, geranic acid showed very strong inhibitory activity against both fungi (MIC<46 μM). To evaluate the possibility of enhancing fungal resistance in maize by overexpressing geranic acid, we generated transgenic plants with the geraniol synthase gene cloned from Lippia dulcis under the control of a ubiquitin promoter. The volatile and non-volatile metabolite profiles of leaves from transgenic and control lines were compared. The headspaces collected from intact seedlings of transgenic and control plants were not significantly different, although detached leaves of transgenic plants emitted 5-fold more geranyl acetate compared to control plants. Non-targeted LC-MS profiling and LC-MS-MS identification of extracts from maize leaves revealed that the major significantly different non-volatile compounds were 2 geranic acid derivatives, a geraniol dihexose and 4 different types of hydroxyl-geranic acid-hexoses. A geranic acid glycoside was the most abundant, and identified by NMR as geranoyl-6-O-malonyl-β-d-glucopyranoside with an average concentration of 45μM. Fungal bioassays with C. graminicola and F. graminearum did not reveal an effect of these changes in secondary metabolite composition on plant resistance to either fungus. The results demonstrate that metabolic engineering of geraniol into geranic acid can rely on the existing default pathway, but branching glycosylation pathways must be controlled to achieve accumulation of the aglycones.  相似文献   

15.
真菌二型态(Dimorphism)是指某些真菌在外界环境因子的诱导下,其营养体可在酵母型(Yeast form)和菌丝型(Mycelium form)两种不同细胞形态间转化的能力。诱导二型态真菌形态转化的环境因子众多,不同环境因子诱导二型态转化的分子机制也不尽相同。二型态真菌形态转换常与致病性有关,在微生物发酵调控中也至关重要,研究真菌形态调控不仅有助于阐明二型态真菌的致病机理,还可丰富二型态真菌形态调控在发酵工业中的应用。本文从影响真菌二型态的外界环境因子、转化机制和真菌发酵形态控制等方面对二型态真菌形态调控研究现状及应用前景进行综述。  相似文献   

16.
The ability of plant pathogenic fungi to infect their host depends on successful penetration into plant tissues. This process often involves the differentiation of a specialized cell, the appressorium. Signalling pathways required for appressorium formation are conserved among fungi. However, the functions involved in appressorium maturation and penetration peg formation are still poorly understood. Recent studies have shown that Pls1 tetraspanins control an appressorial function required for penetration into host plants and are likely conserved among plant pathogenic fungi. Tetraspanins are small membrane proteins widely distributed among ascomycetes and basidiomycetes defining two distinct families; Pls1 tetraspanins are found in both ascomycetes and basidiomycetes and Tsp2 tetraspanins are specific to basidiomycetes. Both fungal tetraspanins families have similar secondary structures shared with animal tetraspanins. Pls1 tetraspanins are present as single genes in genomes of ascomycetes, allowing a unique opportunity to study their function in appressorium mediated penetration. Experimental evidence suggests that Pls1 tetraspanins are required for the formation of the penetration peg at the base of the appressorium, probably through re-establishing cell polarity.  相似文献   

17.
Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests.  相似文献   

18.
In recent years many remarkable changes occurred in our way of life, producing opportunities for microbes. All these changes are related to the recent emergence of previously unrecognized diseases, or the resurgence of diseases that, at least in developed countries, were thought to be under control. This concept is reviewed regarding fungal infections and their agents in the immunocompromised host. The changing pattern of these infections, the portals of entry of fungi into the human host, fungal pathogenicity and the main predisposing factors are analyzed. Opportunistic fungal infections in cancer, organ transplant and acquired immunodeficiency syndrome patients are reviewed, specially candidiasis and aspergillosis.  相似文献   

19.
以真菌为对象的有性生殖机制研究揭示了普遍存在于真核生物中的生物学现象及规律,包括染色体倍性变化、减数分裂形成配子、交配对象识别及细胞一细胞融合形成合子等.真菌的有性生殖由交配型位点控制,除了类似其他真核生物两性生殖的异宗配合外,还包括同宗配合和次级同宗配合,部分物种的单倍体还具有交配型互换的能力.互补交配型的单倍体通过荷尔蒙及其受体进行相互识别,再经过G蛋白偶联受体介导的信号途径调控有性生殖过程及子实体发育,这一过程受多种胞内调控因子及外界环境条件的影响.不同真菌类群生殖方式的演化与物种进化仍缺少统一的规律.进一步研究揭示,真菌有性生殖的调控机制及环境诱导因子,不仅具有重要的理论意义,也有利于促进不同经济真菌子实体的人工培养及高效利用.  相似文献   

20.
中国木本植物病原木材腐朽菌研究   总被引:9,自引:15,他引:9  
戴玉成 《菌物学报》2012,31(4):493-509
简要论述了中国木本植物致病木材腐朽菌,报道危害活立木的木腐菌152种,其中49种(占总数的34%)在中国首次报道为林木病原菌。对每个种的寄主、侵染部位、腐朽类型、发生频率及分布进行了报道。它们中有135种(占总数的89%)造成木材白色腐朽,17种导致褐色腐朽;67种为常见种,33种为偶见种,52种为少见种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号