首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

2.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

3.
Creatine kinase is a sulfhydryl containing enzyme that is particularly susceptible to oxidative inactivation. This enzyme is potentially vulnerable to inactivation under conditions when it would be used as a diagnostic marker of tissue damage such as during cardiac ischemia/reperfusion or other oxidative tissue injury. Oxidative stress in tissues can induce the release of iron from its storage proteins, making it an available catalyst for free radical reactions. Although creatine kinase inactivation in a heart reperfusion model has been documented, the mechanism has not been fully described, particularly with regard to the role of iron. We have investigated the inactivation of rabbit muscle creatine kinase by hydrogen peroxide and by xanthine oxidase generated superoxide or Adriamycin radicals in the presence of iron catalysts. As shown previously, creatine kinase was inactivated by hydrogen peroxide. Ferrous iron enhanced the inactivation. In addition, micromolar levels of iron and iron chelates that were reduced and recycled by superoxide or Adriamycin radicals were effective catalysts of creatine kinase inactivation. Of the physiological iron chelates studied, Fe(ATP) was an especially effective catalyst of inactivation by what appeared to be a site-localized reaction. Fe(ICRF-198), a non-physiological chelate of interest because of its putative role in alleviating Adriamycin-induced cardiotoxicity, also catalyzed the inactivation. Scavenger studies implicated hydroxyl radical as the oxidant involved in iron-dependent creatine kinase inactivation. Loss of protein thiols accompanied loss of creatine kinase activity. Reduced glutathione (GSH) provided marked protection from oxidative inactivation, suggesting that enzyme inactivation under physiological conditions would occur only after GSH depletion.  相似文献   

4.
The effects of xanthine + xanthine oxidase-generated reactive oxygen species (ROS) on rabbit muscle creatine kinase (CK) were studied. Xanthine (0.1 mM) + xanthine oxidase (30 mU/ml) inhibited activity of rabbit muscle CK (1.2mU/ml). Catalase (100/ml), but not SOD (100 U/ml), deferoxamine (100μM) or mannitol (20 mM), protected CK from inactivation; suggesting that H2O2 was responsible for inactivation. These results were different from previously reported findings on bovine heart CK that superoxide radicals inactivate the enzyme. Thus, enzymes with homologous structures may have different reactivities to different ROS. H2O2-induced inactivation of rabbit muscle CK was accompanied by a decrease in its thiol group content, whereas no significant changes in the protein structure were detected by SDS-PAGE or carbonyl content. These results suggest that oxidation of -SH groups by H2O2 seems to be a major mechanism of activation of rabbit muscle CK by xanthine + xanthine oxidase. Such inactivation of CK by H2O2 may be important in ROS-induced pathology.  相似文献   

5.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

6.
In view of the potential role of free radicals in the genesis of cardiac abnormalities under different pathophysiological conditions and the importance of contractile proteins in determining heart function, this study was undertaken to examine the effects of oxygen free radicals on the rat heart myofibrils. Xanthine plus xanthine oxidase (X + XO) which is known to generate superoxide anions (O2-) and hydrogen peroxide (H2O2), an activated species of oxygen, was found to decrease Ca(2+)-stimulated ATPase activity, increase Mg(2+)-ATPase activity and reduce sulfhydryl (SH) group contents in myofibrils; these effects were completely prevented by superoxide dismutase (SOD) plus catalase (CAT). Both H2O2 and hypochlorous acid (HOCl), an oxidant, produced actions on cardiac myofibrils similar to those observed by X + XO. The effects of H2O2 and HOCl were prevented by CAT and L-methionine, respectively. N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), inhibitors of SH groups, also produced effects similar to those seen with X + XO. Dithiothreitol (DTT), a well known sulfhydryl-reducing agent, prevented the actions of X + XO, H2O2, HOCl, NEM and DTNB. These results suggest that marked changes in myofibrillar ATPase activities by different species of oxygen free radicals may be mediated by the oxidation of SH groups.  相似文献   

7.
Xanthine oxidase (1--5 microgram/ml) from cow's milk induces shape change, aggregation, and the release reaction of human washed platelets. Xanthine oxidase plus xanthine produce superoxide radicals, which reduce nitro blue tetrazolium. Superoxide dismutase, allopurinol, or ommission of xanthine inhibits the reduction of nitro blue tetrazolium but has no influence on the platelet response to xanthine oxidase. In contrast, small amounts of plasma or apyrase from potatoes abolish the effect on platelets, but not the enzyme activity of xanthine oxidase. Comparison of two xanthine oxidase preparations shows that higher specific enzyme activity corresponds to a lesser effect on platelets. The results suggest that platelet and enzyme activities reside in different components of xanthine oxidase preparations.  相似文献   

8.
《Free radical research》2013,47(2):131-136
The effects of xanthine + xanthine oxidase-generated reactive oxygen species (ROS) on rabbit muscle creatine kinase (CK) were studied. Xanthine (0.1 mM) + xanthine oxidase (30 mU/ml) inhibited activity of rabbit muscle CK (1.2mU/ml). Catalase (100/ml), but not SOD (100 U/ml), deferoxamine (100μM) or mannitol (20 mM), protected CK from inactivation; suggesting that H2O2 was responsible for inactivation. These results were different from previously reported findings on bovine heart CK that superoxide radicals inactivate the enzyme. Thus, enzymes with homologous structures may have different reactivities to different ROS. H2O2-induced inactivation of rabbit muscle CK was accompanied by a decrease in its thiol group content, whereas no significant changes in the protein structure were detected by SDS-PAGE or carbonyl content. These results suggest that oxidation of -SH groups by H2O2 seems to be a major mechanism of activation of rabbit muscle CK by xanthine + xanthine oxidase. Such inactivation of CK by H2O2 may be important in ROS-induced pathology.  相似文献   

9.
The rate of oxidation of glutathione by solubilized sulfhydryl oxidase was significantly enhanced in the presence of horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7). This enhancement was proportional to the amount of active peroxidase in the assay, but could not be attributed solely to the oxidation of glutathione catalyzed by the peroxidase. A change in the Soret region of the horseradish peroxidase spectrum was observed when both glutathione and peroxidase were present. Moreover, addition of glutathione to a sulfhydryl oxidase/horseradish peroxidase mixture resulted in a rapid shift of the absorbance maximum from 403 nm to 417 nm. This shift indicates the oxidation of horseradish peroxidase. Spectra for three isozyme preparations of horseradish peroxidase, two acidic and one basic, all underwent this red-shift in the presence of sulfhydryl oxidase and glutathione. Cysteine and N-acetylcysteine could replace glutathione. Addition of catalase had no effect on the oxidation of peroxidase, indicating that the peroxide involved in the reaction was not derived from that released into the bulk solution by sulfhydryl oxidase-catalyzed thiol oxidation. Further evidence for a direct transfer of the hydrogen peroxide moiety was obtained by addition of glutaraldehyde to a sulfhydryl oxidase/horseradish peroxidase/N-acetylcysteine mixture. Size exclusion chromatography revealed the formation of a high-molecular-weight species with peroxidase activity, which was completely resolved from native horseradish peroxidase. Formation of this species was absolutely dependent on the presence of both the cysteine-containing substrate and sulfhydryl oxidase. The observed enhancement of sulfhydryl oxidase catalytic activity by the addition of horseradish peroxidase supports a bi uni ping-pong mechanism proposed previously for sulfhydryl oxidase.  相似文献   

10.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

11.
Thiourea and superoxide dismutase were effective antidotes to paraquat toxicity in an HL60 cell culture system, whereas other hydroxyl scavengers were ineffective. The efficacy of thioureas was not due to blockage of intracellular paraquat uptake, inhibition of NADPH-P-450 reductase, or reaction with the paraquat radical. Thiourea also competitively inhibited the reduction of cytochrome c by the xanthine/xanthine oxidase superoxide-generating system, and the release of iron from ferritin by superoxide radicals. The reaction of superoxide with thiourea produced a sulfhydryl compound distinct from products formed by hydrogen peroxide or hydroxyl radicals. Spectrophotometric and chromatographic studies indicated the carbon-sulfide double bond was converted to a sulfhydryl group which reacted with Ellman's reagent. Additional confirmatory evidence for the sulfhydryl compound was obtained with carbon-13 NMR and mass spectroscopies. Thus, thioureas are direct scavengers of superoxide radicals as well as hydroxyl radicals and hydrogen peroxide. The rate constant for the reduction of thiourea by superoxide was estimated at 1.1 x 10(3) M-1 s-1. The implication of this finding on free radical studies, the mechanism of paraquat toxicity, and the metabolism of thioureas is discussed.  相似文献   

12.
Clinical and experimental data indicate that activated oxygen species interfere with vascular endothelial cell function. Here, the impact of extracellular oxidant injury on the fibrinolytic response of cultured human umbilical vein endothelial (HUVE) cells was investigated at the protein and mRNA levels. Xanthine (50 microM) and xanthine oxidase (100 milliunits), which produces the superoxide anion radical (O2-) and hydrogen peroxide (H2O2), was used to sublethally injure HUVE cells. Following a 15-min exposure, washed cells were incubated for up to 24 h in serum-free culture medium. Tissue-type plasminogen activator (t-PA) antigen, plasminogen activator inhibitor-1 (PAI-1) antigen, and PAI-1 activity were determined in 1.25 ml of conditioned medium and t-PA and PAI-1 mRNA in the cell extracts of 2 x 10(6) HUVE cells. Control cells secreted 3.9 +/- 1.3 ng/ml (mean +/- S.D., n = 12) within 24 h. Treatment with xanthine/xanthine oxidase for 15 min induced a 2.8 +/- 0.4-fold increase (n = 12, p less than 0.05) of t-PA antigen secretion after 24 h. The t-PA antigen was recovered predominantly in complex with PAI-1. The oxidant injury caused a 3.0 +/- 0.8-fold increase (n = 9, p less than 0.05) in t-PA mRNA within 2 h. Total protein synthesis was unaltered by xanthine/xanthine oxidase. The oxidant scavengers superoxide dismutase and catalase, in combination, abolished the effect of xanthine/xanthine oxidase on t-PA secretion and t-PA mRNA synthesis. Xanthine/xanthine oxidase treatment of HUVE cells did not affect the PAI-1 secretion in conditioned medium nor the PAI-1 mRNA levels in cell extracts. Thus extracellular oxidant injury induces t-PA but not PAI-1 synthesis in HUVE cells.  相似文献   

13.
The reversible and irreversible conversion of xanthine dehydrogenase to xanthine oxidase during ischemia/reperfusion and oxidative stress induced by hydrogen peroxide or diamide and its relationship with glutathione and protein SH groups were studied. The direct spectrophotometric measurement of the various forms of the xanthine-converting enzyme indicates that, in the fresh rat heart or after normoxic perfusion, there always is a basal level of 80% xanthine dehydrogenase and 20% of xanthine oxidase (15% irreversible and 5% reversible) that could contribute to the background production of free radicals. There is no significant increase of irreversible xanthine oxidase during ischemia nor during reperfusion. After global ischemia the reversible oxidase shows almost no increase while, when ischemia is followed by reperfusion, there is a limited increase (less then 9%) of the reversible xanthine oxidase. In the latter conditions there is a decrease of glutathione and of SH groups of about 70% and 25%, respectively. Perfusion for 1 h with oxidizing agents like hydrogen peroxide (60 microM) or diamide (100 microM) determines a marked conversion of xanthine dehydrogenase to reversible xanthine oxidase of about 40% and 60%, respectively; this oxidase activity partially reconverts to the dehydrogenase after withdrawing the oxidizing agents from the perfusion medium. The level of irreversible xanthine oxidase remains unchanged in all the conditions tested. Both hydrogen peroxide and diamide induce a strong decrease in SH groups and depletion of glutathione. The xanthine dehydrogenase----xanthine oxidase conversion thus appears to be sensitive to the redox state of thiol groups.  相似文献   

14.
1. Xanthine oxidase (EC 1.2.3.2) was found to represent more than 8% of the intrinsic protein of the bovine milk-fat-globule membranes. 2. Less than 25% of the xanthine oxidase activity of the fat-globule membrane was solubilized with 0.1 M-sodium pyrophosphate buffer or 2M-NaCl. Of the particulate activity remaining 56% was solubilized with Triton X-100. 3. The xanthine oxidase activity solubilized with buffer, 2M-NaCl or Triton X-100 was not liberated as the free enzyme. Only tryptic digestion was found to release the free enzyme from the fat-globule membrane. Tryptic digestion also liberated free xanthine oxidase from those fractions solubilized by buffer or NaCl, but not from those fractions solubilized with Triton X-100 or by sonication. 4. The effect of membrane association on the catalytic properties of the enzyme could be mimicked by low pH or by the presence in the assay mixture of certain concentrations of 2-methyl-propan-2-ol, but not 1,4-dioxan, suggesting that hydrogen-bonding rather than low dielectric constant may be involved. 5. The origin of the milk-fat-globule membrane is discussed with reference to the intrinsic nature of the associated xanthine oxidase activity.  相似文献   

15.
Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because the enzymes had not been localized in human corneas until now, the aim of this study was to detect xanthine oxidoreductase and xanthine oxidase in the corneas of normal post-mortem human eyes using histochemical and immunohistochemical methods. Xanthine oxidoreductase activity was demonstrated by the tetrazolium salt reduction method and xanthine oxidase activity was detected by methods based on cerium ion capture of hydrogen peroxide. For immunohistochemical studies. we used rabbit antibovine xanthine oxidase antibody, rabbit antihuman xanthine oxidase antibody and monoclonal mouse antihuman xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody. The results show that the enzymes are present in the corneal epithelium and endothelium. The activity of xanthine oxidoreductase is higher than that of xanthine oxidase, as clearly seen in the epithelium. Further studies are necessary to elucidate the role of these enzymes in the diseased human cornea. Based on the findings obtained in this study (xanthine oxidoreductase/xanthine oxidase activities are present in normal human corneas), we hypothesize that during various pathological states, xanthine oxidase-generated ROS might be involved in oxidative eye injury.  相似文献   

16.
This study was undertaken to examine the effects of oxygen free radicals on phosphatidylethanolamine (PE) N-methylation in rat heart sarcolemmal (SL) and sarcoplasmic reticular (SR) membranes. Three catalytic sites involved in the sequential methyl transfer reaction were studied by assaying the incorporation of radiolabeled methyl groups from S-adenosyl-L-methionine (0.055, 10, and 150 microM) into SL or SR PE molecules under optimal conditions. In the presence of xanthine + xanthine oxidase (superoxide anion radicals generating system), PE N-methylation was inhibited at site I and III in the heavy SL fraction isolated by the hypotonic shock-LiBr treatment method. In the light SL fraction isolated by sucrose-density gradient, a significant inhibition of PE N-methylation was seen at all three sites. These inhibitory effects of xanthine + xanthine oxidase on PE N-methylation were prevented by the addition of superoxide dismutase. Hydrogen peroxide showed a significant inhibition of PE N-methylation at site I in the heavy SL fraction, and at site I and II in the light SL fraction. Catalase blocked the inhibitory effects of hydrogen peroxide. The effects of both xanthine + xanthine oxidase and hydrogen peroxide on the SR membranes were similar to those seen for the heavy SL fraction. These results suggest that, in addition to lipid peroxidation, the oxygen free radicals may affect the function of cardiac membranes by decreasing the phospholipid N-methylation activity.  相似文献   

17.
Exhaustive exercise generates free radicals. However, the source of this oxidative damage remains controversial. The aim of this paper was to study further the mechanism of exercise-induced production of free radicals. Testing the hypothesis that xanthine oxidase contributes to the production of free radicals during exercise, we found not only that exercise caused an increase in blood xanthine oxidase activity in rats but also that inhibiting xanthine oxidase with allopurinol prevented exercise-induced oxidation of glutathione in both rats and in humans. Furthermore, inhibiting xanthine oxidase prevented the increases in the plasma activity of cytosolic enzymes (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase) seen after exhaustive exercise. Our results provide evidence that xanthine oxidase is responsible for the free radical production and tissue damage during exhaustive exercise. These findings also suggest that mitochondria play a minor role as a source of free radicals during exhaustive physical exercise.  相似文献   

18.
The concentration of substrate expressed as hypoxanthine capable of reacting with xanthine oxidase to release superoxide free radicals (O2-) was measured in control and Dupuytren''s contracture palmar fascia. In Dupuytren''s contracture palmar fascia the concentration of hypoxanthine was six times that of control and was greatest in "nodular" areas. Xanthine oxidase activity was also detected in Dupuytren''s contracture palmar fascia. These results suggest a greater potential for hypoxanthine-xanthine oxidase generated oxygen free radical formation in Dupuytren''s contracture than in control palmar fascia. Production of free radicals may be an important factor in the pathogenesis of Dupuytren''s contracture. The benefit of allopurinol in the management of Dupuytren''s contracture and other fibrotic conditions may thus be explained, as allopurinol binds to xanthine oxidase and prevents release of free radicals.  相似文献   

19.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

20.
Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time-release (2.5 mg/day) allopurinol pellet, 7 days before the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for 3 consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral noncontracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal level of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase-3 activity, but it had no effect on other markers of mitochondrial-associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation, and caspase-3 activity; prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione; prevented the increase in catalase and copper-zinc superoxide dismutase activities; and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号