首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T P Singh  P Narula  V S Chauhan  P Kaur 《Biopolymers》1989,28(7):1287-1294
The peptide N-Boc-L-Gly-dehydro-Phe-NHCH3 was synthesized by the combination of N-Boc-L-Gly-dehydro-Phe azlactone and methylamine. The peptide crystallizes in orthorhombic space group P2(1)2(1)2(1) with a = 5.679(2) A, b = 16.423(9) A, c = 19.198(10) A, V = 1791(2) A3, Z = 4, dm = 1.212(5) Mg m-3, dc = 1.237(1) Mg m-3. The structure was determined by direct methods using SHELXS 86. The structure was refined by full-matrix least squares procedure to an R value of 0.049 for 1509 observed reflections. The molecular dimensions are, in general, in good agreement with the standard values. The bond angle C alpha-C beta-C gamma in the dehydro-Phe residue is 133.6(5) degrees. The peptide backbone torsion angles are theta 1 = -171.4(4) degrees, omega 0 = 178.2(4) degrees, phi 1 = -57.2(6) degrees, psi 1 = 141.2(4) degrees, omega 1 = -174.4(4) degrees, phi 2 = 71.5(6) degrees, psi 2 = 7.2(6) degrees, and omega 2 = -179.8(5) degrees. These values show that the backbone adopts the beta-bend type II conformation. The Boc group has a trans-trans conformation. The side-chain torsion angles in dehydro-Phe are chi 2 = 1.6(9) degrees, chi 2(2, 1) = 0.5(9) degrees, and chi 2(2, 2) = 179.8(6) degrees. The plane of C2 alpha-C2 beta-C2 gamma is rotated with respect to the plane of the phenyl ring at 0.5(6) degrees, which indicates that the atoms of the side chain of the dehydro-Phe residue are essentially coplanar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The peptide N-Ac-dehydro-Phe-L-Val-OH (C16H20N2O4) was synthesized by the usual workup procedure. The peptide crystallizes from its solution in acetonitrile at 4 degrees in hexagonal space group P6(5) with a = b = 11.874(2)A, c = 21.856(9) A, V = 2668(1) A3, Z = 6, dm = 1.151(3) g cm-3, dc = 1.136(4) g cm-3, CuK alpha = 1.5418 A, mu = 0.641 mm-1, F(000) = 972, T = 293 K. The structure was solved by direct methods and refined by least-squares procedure to an R value of 0.074 for 1922 observed reflections. In the dehydro-residue, the C1 alpha-C1 beta distance is 1.35(1) A while the bond angle C1 alpha-C1 beta-C1 gamma is 131.2(9) degrees. The backbone torsion angles are: omega 0 = 172(1) degrees, phi 1 = -60(2) degrees, psi 1 = -31(2) degrees, omega 1 = -179(1) degrees, phi 2 = 59(2) degrees. These values suggest that the peptide tends to adopt an alternating right-handed and left-handed helical conformation. The side chain torsion angles are: chi 1(1) = -6(2) degrees, chi 1(2.1) = -1(2) degrees, chi 1(2.2) = -178(2) degrees, chi 2(1.1) = 63(2) degrees and chi 2(1.2) = -173(1) degrees. These values show that the side chain of dehydro-Phe is planar whereas the valyl side chain adopts a sterically most preferred conformation. The molecules, linked by intermolecular hydrogen bonds and van der Waals forces, are arranged in helices along the c-axis. The helices are held side-by-side by van der Waals contacts.  相似文献   

3.
It is noteworthy that the dehydro-Ala residue adopts an extended conformation that is different than those observed in dehydro-Phe, dehydro-Leu, and dehydro-Abu. The peptide N-Boc-L-Phe-dehydro-Ala-OCH3 (C18H24N2O5) was synthesized by the usual workup procedure and finally by converting N-Boc-L-Phe-L-Ser-OCH3 to N-Boc-L-Phe-dehydro-Ala- OCH3. It was crystallized from its solution in a methanol-water mixture at room temperature. The crystals belong to the monoclonic space group P2(1), with a = 9.577(1) A, b = 5.195(3) A, c = 19.563(3) A, beta = 94.67(5) degrees, V = 970.1(6) A3, Z = 2, dm = 1.201(5) Mg m-3, dc = 1.197(5) Mg m-3. The structure was determined using direct method procedures. It was refined by a full-matrix least-squares procedure to an R value of 0.048 for 1370 observed reflections. The C2 alpha-C2 beta distance is 1.327(8) A, while the bond angles N2-C2 alpha-C2' and C1'-N2-C2 alpha are 109.8(5) degrees and 127.8(5) degrees, respectively. The backbone adopts a nonspecific conformation with dehydro-Ala in a fully extended conformation with the following torsion angles: theta 1 = 175.2(4) degrees, omega 0 = 170.2(4) degrees, phi 1 = 135.8(5) degrees, psi 1 = -22.6(6) degrees, omega 1 = 168.5(5) degrees, phi 2 = -170.3(5) degrees, psi 2T = -178.6(5) degrees, theta T = 178.4(7) degrees. The rigid planar and trans conformation of dehydro-Ala forces Phe to adopt a strained conformation. The Boc group has a trans-trans conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The peptide N-Boc-L-Phe-dehydro-Leu-L-Val-OCH3 was synthesized by the usual workup procedure and finally by coupling the N-Boc-L-Phe-dehydro-Leu-OH to valine methyl ester. It was crystallized from its solution in methanol-water mixture at 4 degrees C. The crystals belong to the triclinic space group P1 with a = 5.972(5) A, b = 9.455(6) A, c = 13.101(6) A, alpha = 103.00(4) degrees, beta = 97.14(5) degrees, gamma = 102.86(5) degrees, V = 690.8(8) A, Z = 1, dm = 1.179(5) Mg m-3 and dc = 1.177(5) Mg m-3. The structure was determined by direct methods using SHELXS86. It was refined by block-diagonal least-squares procedure to an R value of 0.060 for 1674 observed reflections. The C alpha 2-C beta 2 distance of 1.323(9) A in dehydro-Leu is an appropriate double bond length. The bond angle C alpha-C beta-C gamma in the dehydro-Leu residue is 129.4(8) degrees. The peptide backbone torsion angles are theta 1 = -168.6(6) degrees, omega 0 = 170.0(6) degrees, phi 1 = -44.5(9) degrees, psi 1 = 134.5(6) degrees, omega 1 = 177.3(6) degrees, phi 2 = 54.5(9) degrees, psi 2 = 31.1(10) degrees, omega 2 = 171.7(6) degrees, phi 3 = 51.9(8) degrees, psi T3 = 139.0(6) degrees, theta T = -175.7(6) degrees. These values show that the backbone adopts a beta-turn II conformation. As a result of beta-turn, an intramolecular hydrogen bond is formed between the oxygen of the ith residue and NH of the (i + 3)th residue at a distance of 3.134(6) A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The crystal structure of t-Boc-glycyl-L-phenylalanine (C14H22N2O5, molecular weight = 298) has been determined. Crystals are monoclinic, space group P2(1), with a = 7.599(1) A, b = 9.576(2), c = 12.841(2), beta = 97.21(1) degrees, Z = 2, Dm = 1.149, Dc = 1.168 g X cm-3. Trial structure was obtained by direct methods and refined to a final R-index of 0.064 for 1465 reflections with I greater than 1 sigma. The peptide unit is trans planar and is nearly perpendicular to the plane containing the urethane moiety. The plane of the carboxyl group makes a dihedral angle of 16.0 degrees with the peptide unit. The backbone torsion angles are omega 0 = -176.9 degrees, phi 1 = -88.0 degrees, psi 1 = -14.5 degrees, omega 1 = 176.4 degrees, phi 2 = -164.7 degrees and psi 2 = 170.3 degrees. The phenylalanine side chain conformation is represented by the torsion angles chi 1 = 52.0 degrees, chi 2 = 85.8 degrees.  相似文献   

6.
The peptide N-Ac-dehydro-Phe-L-Val-L-Val-OCH3 (C22H31N3O5) was synthesized by the usual workup procedure and finally by coupling the N-Ac-dehydro-Phe-L-Val-OH to valine methyl ester. It was crystallized from its solution in acetonitrile-water mixture at 4 degrees C. The crystals belong to the space group P1 with a = 8.900(3) A, b = 11.135(2) A, c = 12.918(2) A, alpha = 90.36(1) degrees, beta = 110.14(3) 14(3) degrees, V = 1207.7(6) A, 3Z = 2, dm = 1.156(5) Mgm-3, dc = 1.148(5) Mgm-3. The structure was determined by direct methods using SHELXS86. The structure was refined by full-matrix least-squares procedure to an R value of 0.077 for 3916 observed reflections. The molecular dimensions and conformations of the two crystallographically independent molecules are in good agreement. In the dehydro residues, the average C alpha-C beta distance is 1.31(2) A whereas the bond angle C alpha-C beta-C gamma is 132(1) degrees. The average backbone torsion angles are omega 0 = 169(1) degrees, phi 1 = -40(1) degree, psi 1 = -50(1) degree, omega 1 = -177(1) degree, phi 2 = 54(1) degree, psi 2 = 46(1) degree, omega 2 = -174(1) degree, phi 3 = 103(1) degree, psi T3 = -139(1) degree, and theta T3 = -176(1) degree. The acetyl group is in the trans conformation, while the backbone adopts a right-handed and left-handed helical conformation alternatingly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The structure of a dihydrated form of glycyl-L-tyrosyl-L-alanine (GYA) has been determined as part of a series of peptide structural investigations and development of microscale vapor diffusion experiments for peptide crystal growth. Crystals were grown by the hanging-drop method against sodium acetate. The tripeptide is a zwitterion in the crystal, adopting an extended conformation through glycine, a nearly perpendicular bend at tyrosine and a reverse turn for the C-terminal carboxylate. Principal backbone torsion angles are psi 1 175(1) degrees, omega 2 173(1) degrees, phi 2 -119(1) degrees, psi 2 120(1) degrees, omega 3 172(1) degrees, phi 3 -73(1) degrees, psi 31 -9(1) degrees, psi 32 171(1) degrees. The tyrosyl side chain adopts an unusual orientation (chi 1/2 = -86(1) degrees). The relationship of the GYA.2H2O structure to GYA sequences in proteins is examined, particularly as regards its helix-forming potential. Crystal data: C14H19N3O4.2H2O, M(r) = 345.36, orthorhombic, P2(1)2(1)2(1), a = 4.810 (4), b = 11.400(7), c = 30.162(23)A, V = 1653.8(24)A-3, Z = 4, Dx = 1.387 Mgm-3, lambda(CuK- alpha) = 1.540 A, mu = 9.053 mm-1, F(000) = 736, T = 199 K, R = 0.041 for 1458 observations with I greater than or equal to 3 sigma(I).  相似文献   

8.
The crystal structure of a tripeptide, tryptophanyl-glycyl-glycine dihydrate (C15H18N4O4.2H2O, molecular weight = 354) has been determined. The crystals are orthorhombic, space group P2(1)2(1)2(1), with a = 7.875 (1) A, b = 9.009(1), c = 24.307(1) and Z = 4. The final R-index is 0.058 for 1488 reflections [sin theta)/lambda less than or equal to 0.6 A-1) with I greater than 2 sigma (I). The molecule exists as a zwitterion, with terminal NH3+ and COO- groups. The peptide units are trans and nearly perpendicular to the plane of the carboxyl group. The backbone torsion angles are: psi 1 = 132.7 degrees, omega 1 = 174.2 degrees, phi 2 = 88.2 degrees, psi 2 = 8.6 degrees, omega 2 = -179.8 degrees, phi 3 = -85.2 degrees, psi 31 = -178.1 degrees, psi 32 = 5.0 degrees. For the sidechain of tryptophan, chi 1 = -171.6 degrees, chi 2 = 101.0 degrees.  相似文献   

9.
The crystal structure of a tripeptide, L-phenylalanyl-glycyl-glycine (C13H17N3O4), molecular weight = 279.3, has been determined. The crystals are orthorhombic, space group P2(1)2(1)2(1), with a = 5.462(1) A, b = 15.285(5), c = 16.056(4), Z = 4, and P (calc) = 1.384 g.cm-3. The final R-index is 0.052 for 866 reflections with sin theta/lambda less than or equal to 0.55 A-1 and I greater than 1 sigma. The molecule exists as a zwitterion, with the N-terminus protonated and the C-terminus in an ionized form. Both the peptide units are in the trans configuration and planar, though one of them shows significant deviations from planarity ([delta w[ = 5.1 degrees). The peptide backbone is folded, with the torsion angles of: psi 1 = 116.2(5) degrees, omega 1 = 178.8(4), phi 2 = -89.7(5). psi 2 = -28.9(6), omega 2 = -174.9(4), phi 3 = 134.9(5), psi 31 = 7.8(6), psi 32 = -172.6(4). The terminal glycine adopts a "D-residue" conformation. For the sidechain of phenylalanine, chi 1 = 175.5(4), chi 2 = -127.0(6).  相似文献   

10.
L-tyrosyl-L-tyrosine crystallizes as a dihydrate in the orthorhombic system, space group C222(1), with a = 12.105(2), b = 12.789(2), c = 24.492(3) A, Z = 8. The structure was solved by direct methods and refined to a final R-value of 0.059 for 1740 observed reflections. The molecule exists as a zwitterion, the peptide unit is trans planar, and the backbone torsion angles correspond to an extended conformation, with psi 1 = 149.4 degrees, phi 2 = -161.2 degrees, psi 2 = 158.3 degrees. The values of the side-chain torsion angles (chi 1, chi 2) are (-58.8 degrees, -63.1 degrees) for the first tyrosine and (-171.7 degrees, -116.5 degrees) for the second. The planes of the aromatic rings are nearly parallel (dihedral angle of 6.1 degrees), and their centers are separated by 10.9 A. The carboxyl plane forms a dihedral angle of 23.8 degrees with the plane of the peptide bond.  相似文献   

11.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

12.
The structural perturbation induced by C(alpha)-->N(alpha) exchange in azaamino acid-containing peptides was predicted by ab initio calculation of the 6-31G* and 3-21G* levels. The global energy-minimum conformations for model compounds, For-azaXaa-NH2 (Xaa=Gly, Ala, Leu) appeared to be the beta-turn motif with a dihedral angle of phi= +/- 90 degrees, psi=0 degrees. This suggests that incorporation of the azaXaa residue into the i+2 position of designed peptides could stabilize the beta-turn structure. The model azaLeu-containing peptide, Boc-Phe-azaLeu-Ala-OMe, which is predicted to adopt a beta-turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (phi i+1, psi i+1) (phi i+2, psi i+2)] of the Phe-azaLeu fragment in the model peptide, Boc-Phe-azaLeu-Ala-OMe, as [(-59 degrees, 127 degrees) (107 degrees, -4 degrees)]. This solution conformation supports a betaII-turn structural preference in azaLeu-containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i+2 position in synthetic peptides is expected to provide a stable beta-turn formation, and this could be utilized in the design of new peptidomimetics adopting a beta-turn scaffold.  相似文献   

13.
The synthetic peptide Gly-L-Ala-L-Val (C10H19N3O4.3H2O; GAV) crystallizes in the monoclinic space group P21, with a = 8.052(2), b = 6.032(2), c = 15.779(7) A, beta = 98.520(1) degree, V = 757.8 A3, Dx = 1.312 g cm-3, and Z = 2. The peptide Gly-L-Ala-L-Leu (C11H21N3O4.3H2O; GAL) crystallizes in the orthorhombic space group P212121, with a = 6.024(1), b = 8.171(1), c = 32.791(1) A, V = 1614 A3, Dx = 1.289 g cm-3, and Z = 4. Their crystal structures were solved by direct methods using the program SHELXS-86, and refined to an R index of 0.05 for 1489 reflections for GAV and to an R index of 0.05 for 1563 reflections for GAL. The tripeptides exist as a zwitterion in the crystal and assume a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -150.7 degrees; phi 2, psi 2 = -68.7 degrees, -38.1 degrees; phi 3, psi 32 = -74.8 degrees, -44.9 degrees, 135.9 degrees for GAV; psi 1 = -150.3 degrees; phi 2, psi 2 = -67.7 degrees, -38.9 degrees; phi 3, psi 31, psi 32 = -72.2 degrees, -45.3 degrees, 137.5 degrees for GAL. Both the peptide units in both of the tripeptides show significant deviation from planarity [omega 1 = -171.3(6) degrees and omega 2 = -172.0(6) degrees for GAV; omega 1 = -171.9(5) degrees and omega 2 = -173.2(6) degrees for GAL]. The side-chain conformational angles chi 21 and chi 22 are -61.7(5) degrees and 175.7(5) degrees, respectively, for valine, and the side-chain conformations chi 12 and chi 23's are -68.5(5) degrees and (-78.4(6) degrees, 159.10(5) degrees) respectively, for leucine. Each of the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an alpha-helix.  相似文献   

14.
The crystal structure of the tripeptide t-Boc-L-Pro-D-Ala-D-Ala-NHCH3, monohydrate, (C17H30N4O5.H2O, molecular weight = 404.44) has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P2(1), a = 9.2585(4), b = 9.3541(5), c = 12.4529(4)A, beta = 96.449(3) degrees, Z = 2. The peptide units are in the trans and the tBoc-Pro bond in the cis orientation. The first and third peptide units show significant deviations from planarity (delta omega = 5.2 degrees and delta omega = 3.7 degrees, respectively). The backbone torsion angles are: phi 1 = -60 degrees, psi 1 = 143.3 degrees, omega 1 = -174.8 degrees, phi 2 = 148.4 degrees, psi 2 = -143.1 degrees, omega 2 = -179.7 degrees, phi 3 = 151.4 degrees, psi 3 = -151.9 degrees, omega 3 = -176.3 degrees. The pyrrolidine ring of the proline residue adopts the C2-C gamma conformation. The molecular packing gives rise to an antiparallel beta-sheet structure formed of dimeric repeating units of the peptide. The surface of the dimeric beta-sheet is hydrophobic. Water molecules are found systematically at the edges of the sheets interacting with the urethane oxygen and terminal amino groups. Surface catalysis of an L-Ala to D-Ala epimerization process by water molecules adsorbed on to an incipient beta-sheet is suggested as a mechanism whereby crystals of the title peptide were obtained from a solution of tBoc-Pro-D-Ala-Ala-NHCH3.  相似文献   

15.
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.  相似文献   

16.
The energy-minimized conformation of an infinitely long poly-(L,D)-alanine in single-stranded beta 6.3-helix was calculated by the molecular mechanics method. When energy minimization was started from a wide range of initial geometries, six optimized conformations were obtained and identified as the right- and left-handed counterparts of the beta 4.5-, beta 6.3-, and beta 8.2-helices. It was found that their conformation energies increase in this order, the beta 4.5-helix having the lowest energy. The backbone dihedral angles of the energy-minimized beta 6.3-helix were: phi L = -116 degrees (or -131 degrees), psi L = 122 degrees (or 111 degrees), phi D = 131 degrees (or 116 degrees), psi D = -111 degrees (or -122 degrees), omega L = 173 degrees (or 173 degrees), and omega D = -173 degrees (or -173 degrees) for the right-handed (or left-handed) helix. This helix was composed of 6.30 residues/turn with a pitch of 4.97 A. All the alpha-carbons of L- and D-configurations appeared on one common circular helix. Interestingly, small deviations (approximately 7 degrees) of the peptide bonds from the planar structure caused a considerable lowering of the conformation energy, and, at the same time, they produced more favorable fitting of the hydrogen bonds; the carbonyl oxygens and the nearest-neighbor alpha-hydrogens also took more favorable relative positions.  相似文献   

17.
Transferred nuclear Overhauser enhancement spectroscopy (TRNOE) was used to observe changes in a ligand's conformation upon binding to its specific antibody. The ligands studied were methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-4-fluoro-beta-D-galactopyra nos ide (me4FGal2) and its selectively deuteriated analogue, methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-2-deuterio-4-fluoro-beta -D- galactopyranoside (me4F2dGal2). The monoclonal antibody was mouse IgA X24. The solution conformation of the free ligand me4F2dGal2 was inferred from measurements of vicinal 1H-1H coupling constants, long-range 1H-13C coupling constants, and NOE cross-peak intensities. For free ligand, both galactosyl residues adopt a regular chair conformation, but the NMR spectra are incompatible with a single unique conformation of the glycosidic linkage. Analysis of 1H-1H and 1H-13C constants indicates that the major conformer has an extended conformation: phi = -120 degrees; psi = 180 degrees; and omega = 75 degrees. TRNOE measurements on me4FGal2 and me4F2dGal2 in the presence of the specific antibody indicate that the pyranose ring pucker of each galactose ring remains unchanged, but rotations about the glycosidic linkage occur upon binding to X24. Computer calculations indicate that there are two sets of torsion angles that satisfy the observed NMR constraints, namely, phi = -152 +/- 9 degrees; psi = -128 +/- 7 degrees; and omega = -158 +/- 6 degrees; and a conformer with phi = -53 +/- 6 degrees; psi = 154 +/- 10 degrees; and omega = -173 +/- 6 degrees. Neither conformation is similar to any of the observed conformations of the free disaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The crystal structures of two diastereomeric alpha,beta-dehydrobutyrine peptides Ac-Pro-(Z)-DeltaAbu-NHMe (I) and Ac-Pro-(E)-DeltaAbu-NHMe (II) have been determined. Both dehydropeptides adopt betaI-turn conformation characterized by the pairs of (phi(i+1), psi(i+1)) and (phi(i+2), psi(i+2)) angles as -66, -19, -97, 11 degrees for I and -59, -27, -119, 29 degrees for II. In each peptide, the betaI turn is stabilized by (i + 3) --> i intramolecular hydrogen bonds with N...O distance of 3.12 A for I and 2.93 A for II. These structures have been compared to the crystal structures of homologous peptides Ac-Pro-DeltaVal-NHMe and Ac-Pro-DeltaAla-NHMe. Theoretical analyses by DFT/B3LYP/6-31 + G** method of conformers formed by these four peptides and by the saturated peptide Ac-Pro-Ala-NHMe revealed that peptides with a (Z) substituent at the C(beta) (i+2) atom of dehydroamino acid, i.e. Ac-Pro-DeltaVal-NHMe and Ac-Pro-(Z)-DeltaAbu-NHMe, predominantly form beta turns, both in vacuo and in polar environment. The tendency to adopt beta-turn conformation is much weaker for the peptides lacking the (Z) substituent, Ac-Pro-(E)-DeltaAbu-NHMe and Ac-Pro-DeltaAla-NHMe. The latter adopts a semi-extended or an extended conformation in every polar environment, including a weakly polar solvent. The saturated peptide Ac-Pro-Ala-NHMe in vacuo prefers a beta-turn conformation, but in polar environment the differences between various conformers are small. The role of pi-electron correlation and intramolecular hydrogen bonds interaction in stabilizing the hairpin structures are discussed.  相似文献   

19.
The solution conformation of model compounds for the tri'-antennary and tetraantennary (six-arm) branch point of N-linked glycans has been determined through the use of chemical shift, relaxation, and nuclear Overhauser enhancement data. The object was to establish the conformation about the glycosidic linkages in the N-linked substructure GlcNAc(beta 1,6) [GlcNAc(beta 1,2)] Man(alpha)- by estimation of values for the appropriate glycosidic torsional angles. The GlcNAc(beta 1,6) linkage in a trisaccharide model compound was found to be constrained to a narrow rotameric subpopulation about the substituted Man C5-C6 bond (omega = -60 degrees) and a narrow range of possible phi - psi values. Free rotation about the Man C5-C6 bond was obstructed by unfavorable steric interactions between the GlcNAc(beta 1,6) and GlcNAc(beta 1,2) residues. A phi, psi value of 55 degrees, 190 degrees was found to be consistent with the NMR data for the GlcNAc(beta 1,6) linkage. However, the value of psi appears to be "virtual" in that the molecule is in equilibrium between two different values (90 degrees and 252 degrees). For the GlcNAc(beta 1,2) linkage, complete agreement between all the observed NMR parameters and all the calculated ensemble average values could only be obtained with a set of potential energy functions which included hydrogen bonding. Other choices of potentials yielded calculated values that disagreed with at least two of the observed quantities. As a result, we infer that an interresidue hydrogen bond is formed, and we find it to be between the GlcNAc(beta 1,2) ring oxygen and the Man C3 hydroxyl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The crystal structures of two analogs of Pro-Leu-Gly-NH2 (1), containing a gamma-lactam conformational constraint in place of the -Leu-Gly- sequences, are described. The highly biologically active (S,R)-diastereomer 2a is semi-extended at the C-terminus, with the N-terminal Pro residue in the unusual "C5" conformation [psi 1 = -0.8(15) degrees] stabilized by a (peptide)N-H...N(amino) intramolecular H-bond [the N(3)...N(4) separation is 2.687(11)A]. Conversely, the N,N'-isopropylidene aminal trihydrate of the (S,S)-diastereomer 2b, compound 3, adopts a beta-bend conformation at the C-terminus, as already reported for 1. However, the backbone torsion angles [phi 2 = 57.4(4), psi 2 = -129.9(3) degrees; psi 3 = -92.3(4), phi 3 = 6.4(5) degrees] lie close to the values expected for the corner residues of an ideal type-II' beta-bend. A weak intramolecular 4----1 H-bond is seen between the Gly carboxyamide anti-NH and Pro C = O groups. In the newly formed 2,2,3,4-tetraalkyl-5-oxo-imidazolidin-1-yl moiety the psi 1 torsion angle is 12.9(4) degrees and the intramolecular N(3)...N(4) separation is 2.321(4)A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号