首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alterations of the oligosaccharide structures of glycoproteins are associated with differentiation, malignant transformation, and expression of the same protein in different cell types. The potential biological importance of oligosaccharides has resulted in a growing need for detailed structural information. When glycoproteins are available in limited quantities and/or bear highly heterogeneous oligosaccharides, characterization of their oligosaccharides is difficult. We have developed an efficient approach for obtaining detailed information about oligosaccharides by determining structural 'fingerprints' using lectin affinity high-performance liquid chromatography.  相似文献   

2.
The biosynthesis of the mannose 6-phosphate recognition marker has been studied in transport-impaired mouse lymphoma cells to determine the subcellular location of the processing enzymes and to characterize the biosynthetic intermediates. Cells were labeled with [2-3H]mannose and chased at a low temperature (15 or 20 degrees C) or at 37 degrees C in the presence of m-chlorocarbonylcyanide phenylhydrazone to disrupt transport of the pulse-labeled molecules within the secretory apparatus. Both treatments inhibited the migration of the pulse-labeled glycoproteins to the Golgi apparatus as measured by the production of complex-type asparagine-linked oligosaccharides. Despite this inhibition in protein transport, acid hydrolases were phosphorylated. Structural analysis of the phosphorylated oligosaccharides indicated that the transport-impaired cells produced a single species of phosphorylated high mannose oligosaccharide; essentially all of the molecules contain a single phosphodiester group that is restricted to the alpha 1,6 branch of the oligosaccharide. The results suggest that synthesis of mannose 6-phosphate-bearing high mannose oligosaccharides occurs in an ordered, compartmentalized posttranslational process. The initial phosphorylation of newly synthesized acid hydrolases occurs at a pre-Golgi site and results in the production of high mannose-type units that contain a single phosphodiester group. In a subsequent compartment, probably within the Golgi apparatus, the monophosphorylated units may be converted to diphosphorylated forms. Finally, at a site distal to the phosphorylation reactions the diesters are hydrolyzed to reveal the mannose 6-phosphate recognition marker.  相似文献   

3.
Bacterial genome sequencing has provided a wealth of genetic data. However, the definitive functional characterization of hypothetical open reading frames and novel biosynthetic genes remains challenging. This is particularly true for genes involved in protein glycosylation because the isolation of their glycan moieties is often problematic. We have developed a focused metabolomics approach to define the function of flagellin glycosylation genes in Campylobacter jejuni 81-176. A capillary electrophoresis-electrospray mass spectrometry and precursor ion scanning method was used to examine cell lysates of C. jejuni 81-176 for sugar nucleotides. Novel nucleotide-activated intermediates of the pseudaminic acid (Pse5NAc7NAc) pathway and its acetamidino derivative (PseAm) were found to accumulate within select isogenic mutants, and use of a hydrophilic interaction liquid chromatography-mass spectrometry method permitted large scale purifications of the intermediates. NMR with cryo probe (cold probe) technology was utilized to complete the structural characterization of microgram quantities of CMP-5-acetamido-7-acetamidino-3,5,7,9-tetradeoxy-L-glycero-alpha-L-manno-nonulosonic acid (CMP-Pse5NAc7Am), which is the first report of Pse modified at C7 with an acetamidino group in Campylobacter, and UDP-2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose, which is a bacillosamine derivative found in the N-linked proteinglycan. Using this focused metabolomics approach, pseB, pseC, pseF, pseI, and for the first time pseA, pseG, and pseH were found to be directly involved in either the biosynthesis of CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am. In contrast, it was shown that pseD, pseE, Cj1314c, Cj1315c, Cjb1301, Cj1334, Cj1341c, and Cj1342c have no role in the CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am pathways. These results demonstrate the usefulness of this approach for targeting compounds within the bacterial metabolome to assign function to genes, identify metabolic intermediates, and elucidate novel biosynthetic pathways.  相似文献   

4.
Isolation and characterization of oligosaccharides of riboflavin binding glycoprotein from hen white is described. Reductive cleavage of the N-glycosylamide carbohydrate-peptide bond with LiBH4/tert-BuOH followed by NaBH4-NaOH treatment gave rise to alditols, which were fractionated by means of HPLC. Twelve alditols were isolated in quantities sufficient for the monosaccharide analysis. Possibility of an ovomucoid-type oligosaccharide structure for all the alditols is discussed.  相似文献   

5.
Oligosaccharides involved in glycoconjugates play important roles in a number of biological events. To elucidate the biological functions of oligosaccharides, sufficient quantities of structurally defined oligosaccharides, are of limited availability by traditional purification methods, are required. Hence, chemical and enzymatic syntheses of oligosaccharides are becoming increasingly important in glycobiology and glycotechnology. In addition, oligosaccharides often occur as glycoconjugates attached to proteins or lipids. Hence, the development of simple and effective methods for synthesizing neoglycoconjugates such as neoglycoprotein and neoglycolipids is essential for an understanding of the biological function of these molecules. Here we review the most recent developments in the enzymatic synthesis of oligosaccharides and neoglycoconjugates.  相似文献   

6.
Spiro MJ  Spiro RG 《Glycobiology》2000,10(5):521-529
Although glucose residues in a triglucosyl sequence are essential for the N-glycosylation of proteins and in their monoglucosyl form have been implicated in lectin-like interactions with chaperones, their removal is required for the formation of mature carbohydrate units and represents the initial steps in the glycoprotein processing sequence. In order to provide a probe for the glucosylation state of newly synthesized glycoproteins obtained from normal or altered cells, we have evaluated the usefulness of recombinant endo-alpha-mannosidase employing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to monitor the change in molecular mass brought about by the release of glucosylated mannose (Glc(1-3)Man). With this approach the presence of two triglucosylated-N-linked oligosaccharides in vesicular stomatis virus (VSV) G protein formed by castanospermine-treated CHO cells or the glucosidase I deficient Lec23 mutant could be clearly demonstrated and an even more pronounced change in migration was observed upon endomannosidase treatment of their more heavily N-glycosylated lysosomal membrane glycoproteins. Furthermore, the G protein of the temperature sensitive VSV ts045 mutant was found to be sensitive to endomannosidase, resulting in a change in electrophoretic mobility consistent with the presence of mono-glucosylated-N-linked oligosaccharides. The finding that endomannosidase also acts effectively on oligosaccharide lipids, as assessed by SDS-PAGE or thin layer chromatography, indicated that it would be a valuable tool in assessing the glucosylation state of these biosynthetic intermediates in normal cells as well as in mutants or altered metabolic states, even if the polymannose portion is truncated. Endomannosidase can also be used to determine the glucosylation state of the polymannose oligosaccharides released during glycoprotein quality control and when used together with endo-beta-N- acetylglucosaminidase H can distinguish between those terminating in a single N-acetylglucosamine or in a di-N-acetylchitobiose sequence.  相似文献   

7.
We report results of a mass-spectrometric-based strategy for determining the detailed structural features of N-linked oligosaccharides from glycoproteins. The method was used to characterize a series of intact, high mannose oligosaccharides isolated from human immunoglobulin M (IgM). The IgM was purified from a patient with Waldenstrom's macroglobulinemia. The strategy included releasing the oligosaccharides by digestion of the purified glycoprotein with endoglycosidase H, separating the released oligosaccharides by high resolution gel filtration, and derivatizing the resulting reducing termini with the uv-absorbing moiety, ethyl p-aminobenzoate. This particular derivative facilitates HPLC detection and provides centers for protonation and deprotonation enhancing liquid secondary ion mass spectra. Positive and negative ion spectra contained molecular species of similar abundance. However, fragment ion peaks yielding sequence information were significantly more prominent in the negative ion mass spectra. Furthermore, it was obvious that the fragmentation patterns differed substantially for linear and branched oligomers. For linear oligosaccharides, a smooth envelope of fragment ions was observed; from low to high mass there was an ordered decrease in ion abundance from both the reducing and nonreducing termini. This pattern of fragment ions was not observed for branched oligosaccharides since in these cases fragments at certain masses could not arise by single bond cleavages. Therefore, these fragments were either significantly reduced in abundance or absent as compared with identical fragments formed from linear molecules. Importantly, 200 pmol of an oligosaccharide could be derivatized, separated, and detected by mass spectrometry, allowing identification of previously unreported minor components of the IgM oligosaccharides. Therefore, this experimental strategy is particularly useful for the purification and detailed structural characterization of low abundance oligosaccharides isolated from heterogeneous biological samples.  相似文献   

8.
The glycans of glycoconjugates mediate numerous important biological processes. Their separation and structural determination present considerable difficulties because of the small quantities that are available from biological sources and the inherent difficulty of analyzing the wide variety of complex structures that exist. A method for the analysis of reducing saccharides by PAGE that uses specific fluorophore labeling and is simple, rapid, sensitive, and readily available to biological researchers, has been developed. The method is known acronimically either as PAGEFS (PAGE of Fluorophore-labeled Saccharides) or in one commercial format as FACE (Fluorophore-Assisted Carbohydrate Electrophoresis). In the PAGEFS method, saccharides having an aldehydic reducing end group are labeled quantitatively with a fluorophore and then separated with high resolution by PAGE. Two fluorophores, 8-aminonaphthalene-l,3,6-trisulfonic acid (ANTS) and 2-aminoacridone (AMAC), have been used to enable the separation of a variety of saccharide positional isomers, anomers, and epimers. Subpicomolar quantities of individual saccharides can be detected using a sensitive imaging system. Mixtures of oligosaccharides obtained by enzymatic cleavage from glycoproteins can be labeled and electrophoresed to yield an oligosaccharide profile of each protein. AMAC can be used to distinguish unequivocally between acidic and neutral oligosaccharides. Methods for obtaining saccharide sequence information from purified oligosaccharides have been developed using enzymatic degradation. Other applications and the potential of the system are described.  相似文献   

9.
The importance of glycosylation in biological events and the role it plays in glycoprotein function and structure is an area in which there is growing interest. In order to understand how glycosylation affects the shape or function of a protein it is however important to have suitable techniques available to obtain structural information on the oligosaccharides attached to the protein. For many years the complexity of the structures required sophisticated analytical techniques only available to a few specialist laboratories. In many cases these techniques were not available or required a large amount of material and therefore the number of glycoproteins which were fully characterised were relatively few. In recent years there have been substantial developments in the analysis of glycosylation which has significantly changed the capability to fully characterise molecules of biological interest. A number of different techniques are available which differ in terms of their complexity, the amount of information which is available from them, the skill needed to perform them and their cost. It is now possible for many laboratories who do not specialise in glycosylation analysis to obtain some information although this may be incomplete. These developments do, however, also make complete characterisation of a glycoprotein a much less daunting task and in many cases this can be performed more easily and with less starting material than was previously required. In this review a summary will be given of current techniques and their suitability for different types of analysis will be considered.  相似文献   

10.
The repeating unit of cepacian, the exopolysaccharide produced by the majority of the microorganisms belonging to the Burkholderia cepacia complex, was isolated from inner bacterial membranes and investigated by mass spectrometry, with and without prior derivatisation. Interpretation of the mass spectra led to the determination of the biological repeating unit primary structure, thus disclosing the nature of the oligosaccharide produced in vivo. Moreover, mass spectra recorded on the native sample revealed that acetyl substitution was very variable, producing a mixture of repeating units containing zero to four acyl groups. At the same time, finding acetylated oligosaccharides showed that binding of these substituents occurred in the cellular periplasmic space, before the polymerisation process took place. In the chromatographic peak containing the repeating unit, oligosaccharides shorter than the repeating unit co-eluted. Mass spectrometric analysis showed that they were biosynthetic intermediates of the repeating unit and further investigation revealed the biosynthetic sequence of cepacian building block.  相似文献   

11.
The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature’s own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis.  相似文献   

12.
Biosynthesis of sulfated saccharides that are linked to asparagine residues in the cell surface glycoprotein of Halobacterium halobium via a glucose residue involves sulfated dolichyl-monophosphoryl oligosaccharide intermediates (Lechner, J., Wieland, F., and Sumper, M. (1985) J. Biol. Chem. 260, 860-866). During isolation and characterization of these lipid oligosaccharides we detected a group of related compounds containing additional unidentified sugar residues. Here we report that: 1) the unknown sugar residues were 3-O-methylglucose, linked peripherally to the lipid-saccharide intermediates; 2) the 3-O-methylglucose residues in the oligosaccharides occur only at the lipid-linked level but are absent at the protein-linked level; 3) cell surface glycoprotein biosynthesis in Halobacteria in vivo is drastically depressed when S-adenosylmethionine-dependent methylation is inhibited, indicating that methylation is an obligatory step during glycoprotein synthesis. We propose a mechanism for the transport of lipid oligosaccharides through the cell membrane, involving an intermediate stage in which the saccharide moieties are transiently modified with 3-O-methylglucose.  相似文献   

13.
Detailed structural analysis of high molecular weight human milk oligosaccharides (HMOs) is still a challenging task. Here we present a modular strategy for a flexible de novo structural characterization of this class of molecules. The protocol combines established techniques such as separation by two-dimensional high-performance liquid chromatography with different types of mass spectrometry, exoglycosidase digestion, and linkage analysis in an individual glycan-based manner. As a proof of principle, this approach was applied to two distinct HMO isomers representing a difucosylated octaose core and a trifucosylated decaose core. Obtained data revealed the presence of one terminal Lewis A and one internal Lewis X epitope in the case of the octaose and led to the identification of this molecule as a difucosylated iso-lacto-N-octaose. The trifucosylated, doubly branched lacto-N-neo-decaose was shown to represent a new type of HMO core structure in which the branched antenna is linked to carbon atom 3 of the innermost galactosyl residue. Hence, using this analytical protocol a novel HMO structure could be defined. Our results further demonstrate that a combination of different techniques may be required for de novo structural analysis of these molecules.  相似文献   

14.
To establish a new protocol for sensitive detection and structural characterization of sialyl oligosaccharides, their sensitivities and structural information from mass spectrometry and tandem mass spectrometry with FAB-, ESI-, and MALDI were evaluated in detail. Among these ionization methods, FAB-MS and FAB-MS/MS gave reproducible and predictable spectra carrying information on sequence and branching of sialyl oligosaccharides after derivatization with 2-aminopyridine (PA). With both positive and negative ion modes, their structural elucidation promises to be straightforward, MS/MS specta being measurable at as low as 200 pmol. Thus, this method consitutes a powerful tool for sensitive detection and structural characterization of limited quantities of sialyl oligosaccharides by FAB-MS and FAB-MS/MS.  相似文献   

15.
To establish a new protocol for sensitive detection and structural characterization of sialyl oligosaccharides, their sensitivities and structural information from mass spectrometry and tandem mass spectrometry with FAB-, ESI-, and MALDI were evaluated in detail. Among these ionization methods, FAB-MS and FAB-MS/MS gave reproducible and predictable spectra carrying information on sequence and branching of sialyl oligosaccharides after derivatization with 2-aminopyridine (PA). With both positive and negative ion modes, their structural elucidation promises to be straightforward, MS/MS spectra being measurable at as low as 200 pmol. Thus, this method constitutes a powerful tool for sensitive detection and structural characterization of limited quantities of sialyl oligosaccharides by FAB-MS and FAB-MS/MS.  相似文献   

16.
A sensitive and quantitative method for the structural analysis of oligosaccharide was established for the glycoform analysis of glycoproteins. In this study,N-linked oligosaccharides of human IgG and bovine transferrin were analyzed for the evaluation of the method. Carbohydrate moiety of glycoprotein was released by hydrazinolysis and purified by paper chromatography. The oligosaccharides were labeled with a fluorescent dye, 2-aminobenzamide, for the enhancement of detection sensitivity. Sialylated (acidic) oligosaccharides were separated from neutral oligosaccharide by employing a strong anion-exchange column (MonoO) followed by the treatment with sialidase. Enzymatically desialyated fractions and neutral fractions of oligosaccharides were applied to normal-phase HPLC to resolve the peaks according to glucose unit (GU). The structure of separated molecules was further determined by sequential digestion with exoglycosidases. As a result, disialylated biantennary complextype oligo saccharide was found to be a major sugar chain in bovine transferrin (63%). In human IgG, core fucosylated asialobiantennary complex oligosaccharides were dominant. These results coincided well with reported results.  相似文献   

17.
Many different compounds bind to human serum albumin (HSA), which can be a significant problem in the drug discovery process. To aid in the design of drug molecules that do not bind to HSA, the structures of HSA/ligand complexes would be very useful. However, little information has been reported on the structures of small molecules complexed to HSA. In this paper, we describe a procedure for preparing isotopically labeled domains of HSA for nuclear magnetic resonance (NMR) studies. The procedure involves the expression in Escherichia coli, refolding, and a multistep purification. Domains I and III are capable of folding into stable structural units and producing well resolved (15)N/(1)H correlation spectra, whereas domain II forms significant aggregates at sub-millimolar concentration. Using our protocols, isotopically labeled and properly folded domains I and III can be effectively produced in large quantities for NMR-based structural studies and NMR-based screening. This provides a valuable tool for obtaining structural information on HSA/ligand complexes by NMR which will be useful in drug discovery.  相似文献   

18.
From the 70% ethanol extract of Mycobacterium smegmatis cells, we isolated a mixture of weakly acidic oligosaccharides composed mainly of glucose and 6-O-methylglucose. The elution pattern from a Bio-Gel P-4 column suggested that the oligosaccharides were smaller than the O-methylglucose polysaccharide (MGP) and could be biosynthetic precursors. Analysis by fast-atom-bombardment mass spectrometry revealed that the oligosaccharides fit into a pattern for polysaccharide synthesis based on an alternate glucosylation-methylation mechanism until the chain reached the composition methylglucose11glucose5glyceric acid, at which time 2 glucose units are added to give glucose2methylglucose11glucose5glyceric acid. The addition of the last 2 glucoses and methylation of one of them to give mature MGP (methylglucose1glucose3methylglucose11glucose5glyceric acid) apparently occurs rapidly because the expected intermediates were not observed. Only 4 glucose units are present at the glyceric acid end of some molecules during all stages of the elongation process, and these represent precursors of a minor MGP homolog with an extra methyl group on the beta 1----3-linked glucose unit of MGP. alpha-D-Glucopyranosyl-(1----2)-D-glyceric acid and alpha-D-glucopyranosyl-(1----6)-alpha-D-glucopyranosyl-(1----2)-D-glycer ic acid were also isolated from the extract and correspond in structure to the expected initial precursors.  相似文献   

19.
An enzymatic procedure for releasing asparagine-linked oligosaccharides from glycoproteins by treatment with N-glycanase (peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase) has been investigated. Ribonuclease B, transferrin, fetuin, and alpha 1-acid glycoprotein were treated with N-glycanase and the released oligosaccharides were radiolabeled with NaB3H4. Lectin staining of the N-glycanase-treated proteins indicated that the deglycosylation reactions had proceeded to completion. The labeled carbohydrate chains were analyzed by HPLC on Micro-Pak AX-5 and AX-10 columns. The proportion of high-mannose and bi-, tri-, and tetraantennary complex chains obtained from each glycoprotein was in agreement with literature values. These results demonstrate that N-glycanase provides a simple method to release all common classes of asparagine-linked oligosaccharides from a glycoprotein in a form that can be radiolabeled directly for structural analysis.  相似文献   

20.
Endogenous ligands for the hepatic lectin which is specific for mannose and N-acetylglucosamine (mannan-binding protein, MBP) were isolated from rat liver rough microsomes and primary cultured hepatocytes by affinity chromatography on an immobilized MBP column. Western blotting using specific antisera revealed that serum glycoproteins, alpha 1-macroglobulin, alpha 1-antitrypsin, and alpha 1-acid glycoprotein, and a lysosomal enzyme, beta-glucuronidase were the major constituents of the endogenous ligands. These endogenous ligands consisted of high mannose-type oligosaccharides of Man9GlcNAc2 and Man8GlcNAc2, and had rapid turnover rates with an average half-life of 45 min, indicating that they were mainly composed of biosynthetic intermediates of glycoproteins. In view of the identification of the endogenous ligands as the biosynthetic intermediates of glycoproteins, the possible functions of the intracellular lectin are discussed in relation to the intracellular transport of glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号