首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
RNA binding domain of telomerase reverse transcriptase   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

5.
6.
7.
8.
9.
10.
11.
Vaults and telomerase share a common subunit, TEP1.   总被引:10,自引:0,他引:10  
Vaults are large cytoplasmic ribonucleoprotein complexes of undetermined function. Mammalian vaults have two high molecular mass proteins of 193 and 240 kDa. We have identified a partial cDNA encoding the 240-kDa vault protein and determined it is identical to the mammalian telomerase-associated component, TEP1. TEP1 is the mammalian homolog of the Tetrahymena p80 telomerase protein and has been shown to interact specifically with mammalian telomerase RNA and the catalytic protein subunit hTERT. We show that while TEP1 is a component of the vault particle, vaults have no detectable telomerase activity. Using a yeast three-hybrid assay we demonstrate that several of the human vRNAs interact in a sequence-specific manner with TEP1. The presence of 16 WD40 repeats in the carboxyl terminus of the TEP1 protein is a convenient number for this protein to serve a structural or organizing role in the vault, a particle with eight-fold symmetry. The sharing of the TEP1 protein between vaults and telomerase suggests that TEP1 may play a common role in some aspect of ribonucleoprotein structure, function, or assembly.  相似文献   

12.
Nucleolin interacts with telomerase   总被引:6,自引:0,他引:6  
  相似文献   

13.
14.
Most tumor cells depend upon activation of the ribonucleoprotein enzyme telomerase for telomere maintenance and continual proliferation. The catalytic activity of this enzyme can be reconstituted in vitro with the RNA (hTR) and catalytic (hTERT) subunits. However, catalytic activity alone is insufficient for the full in vivo function of the enzyme. In addition, the enzyme must localize to the nucleus, recognize chromosome ends, and orchestrate telomere elongation in a highly regulated fashion. To identify domains of hTERT involved in these biological functions, we introduced a panel of 90 N-terminal hTERT substitution mutants into telomerase-negative cells and assayed the resulting cells for catalytic activity and, as a marker of in vivo function, for cellular proliferation. We found four domains to be essential for in vitro and in vivo enzyme activity, two of which were required for hTR binding. These domains map to regions defined by sequence alignments and mutational analysis in yeast, indicating that the N terminus has also been functionally conserved throughout evolution. Additionally, we discovered a novel domain, DAT, that "dissociates activities of telomerase," where mutations left the enzyme catalytically active, but was unable to function in vivo. Since mutations in this domain had no measurable effect on hTERT homomultimerization, hTR binding, or nuclear targeting, we propose that this domain is involved in other aspects of in vivo telomere elongation. The discovery of these domains provides the first step in dissecting the biological functions of human telomerase, with the ultimate goal of targeting this enzyme for the treatment of human cancers.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号