首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.  相似文献   

2.
Specification of the proximal-distal (PD) axis of insect appendages is best understood in Drosophila melanogaster, where conserved signaling molecules encoded by the genes decapentaplegic (dpp) and wingless (wg) play key roles. However, the development of appendages from imaginal discs as in Drosophila is a derived state, while more basal insects produce appendages from embryonic limb buds. Therefore, the universality of the Drosophila limb PD axis specification mechanism has been debated since dpp expression in more basal insect species differs dramatically from Drosophila. Here, we test the function of Wnt signaling in the development of the milkweed bug Oncopeltus fasciatus, a species with the basal state of appendage development from limb buds. RNA interference of wg and pangolin (pan) produce defects in the germband and eyes, but not in the appendages. Distal-less and dachshund, two genes regulated by Wg signaling in Drosophila and expressed in specific PD domains along the limbs of both species, are expressed normally in the limbs of pan-depleted Oncopeltus embryos. Despite these apparently paradoxical results, Armadillo protein, the transducer of Wnt signaling, does not accumulate properly in the nuclei of cells in the legs of pan-depleted embryos. In contrast, engrailed RNAi in Oncopeltus produces cuticular and appendage defects similar to Drosophila. Therefore, our data suggest that Wg signaling is functionally conserved in the development of the germband, while it is not essential in the specification of the limb PD axis in Oncopeltus and perhaps basal insects.  相似文献   

3.
Specialized insect mouthparts, such as those of Drosophila, are derived from an ancestral mandibulate state, but little is known about the developmental genetics of mandibulate mouthparts. Here, we study the metamorphic patterning of mandibulate mouthparts of the beetle Tribolium castaneum, using RNA interference to deplete the expression of 13 genes involved in mouthpart patterning. These data were used to test three hypotheses related to mouthpart development and evolution. First, we tested the prediction that maxillary and labial palps are patterned using conserved components of the leg-patterning network. This hypothesis was strongly supported: depletion of Distal-less and dachshund led to distal and intermediate deletions of these structures while depletion of homothorax led to homeotic transformation of the proximal maxilla and labium, joint formation required the action of Notch signaling components and odd-skipped paralogs, and distal growth and patterning required epidermal growth factor (EGF) signaling. Additionally, depletion of abrupt or pdm/nubbin caused fusions of palp segments. Second, we tested hypotheses for how adult endites, the inner branches of the maxillary and labial appendages, are formed at metamorphosis. Our data reveal that Distal-less, Notch signaling components, and odd-skipped paralogs, but not dachshund, are required for metamorphosis of the maxillary endites. Endite development thus requires components of the limb proximal-distal axis patterning and joint segmentation networks. Finally, adult mandible development is considered in light of the gnathobasic hypothesis. Interestingly, while EGF activity is required for distal, but not proximal, patterning of other appendages, it is required for normal metamorphic growth of the mandibles.  相似文献   

4.
5.
6.
Orthologs of the Hox genes Sex combs reduced ( Scr) and proboscipedia ( pd) are active in the developing labial appendages of all insect species tested. The remarkable variation among insect gnathal structures, particularly in the distal podomeres, suggests two Hox genes may enhance the adaptive potential of gnathal appendage morphology. Functional studies in the fruitfly Drosophila melanogaster, the flour beetle Tribolium castaneum and the milkweed bug Oncopeltus fasciatus show that cooperation between Scr and pb has been generally conserved, but specific mechanisms have been altered during evolution. Cross-regulation of pb by Scr is evident in Drosophila and Tribolium, the more closely related of the three species, but not in Oncopeltus. In all three species, pb function is restricted to the distal podomeres, but details are only known for Drosophila and Oncopeltus, two species exhibiting specialized stylate-haustellate mouthparts. Drosophila pb is required for distal Scr expression, and to repress the appendage patterning genes dachshund and Distal-less ( Dll). Oncopeltus pb has the novel capacity to specify leg fates. Little is known about distal functions of Tribolium pb. Hypomorphic mutations of the Tribolium pb ortholog maxillopedia can be arranged in a graded phenotypic series of palp to leg transformations along both the proximodistal and dorsoventral axes. Mid-embryonic expression profiles of Tribolium pb, Scr, wingless ( wg) and Dll genes were examined in maxillopedia hypomorphic and null mutant backgrounds. Levels of pb and Scr are significantly reduced in the distal appendage field. Tribolium pb therefore positively regulates distal Scr expression, a role that it has in common with Drosophila pb. Tribolium wg is normally down-regulated in the distal domain of the embryonic gnathal appendage buds. It becomes activated distally in maxillopedia hypomorphs. Repression of wg by pb has not been reported in the labial imaginal discs of Drosophila. Alterations of Tribolium Scr and wg expression occur in Dll-expressing cells, however, unlike in Drosophila labial imaginal discs, Dll expression appears unaffected in pb hypomorphic backgrounds. We conclude that the Hox genes Sex combs reduced and proboscipedia control an appendage organizer and cell autonomous fate determination during embryonic labial palp development in Tribolium.  相似文献   

7.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

8.
The morphological diversification of appendages represents a crucial aspect of animal body plan evolution. The arthropod antenna and leg are homologous appendages, thought to have arisen via duplication and divergence of an ancestral structure (Snodgrass, R. (1935) Book Principles of Insect Morphology. New York: McGraw-Hill). To gain insight into how variations between the antenna and the leg may have arisen, we have compared the epistatic relationships among three major proximodistal patterning genes, Distal-less, dachshund and homothorax, in the antenna and leg of the insect arthropod Drosophila melanogaster. We find that Drosophila appendages are subdivided into different proximodistal domains specified by specific genes, and that limb-specific interactions between genes and the functions of these genes are crucial for antenna-leg differences. In particular, in the leg, but not in the antenna, mutually antagonistic interactions exist between the proximal and medial domains, as well as between medial and distal domains. The lack of such antagonism in the antenna leads to extensive coexpression of Distal-less and homothorax, which in turn is essential for differentiation of antennal morphology. Furthermore, we report that a fundamental difference between the two appendages is the presence in the leg and absence in the antenna of a functional medial domain specified by dachshund. Our results lead us to propose that the acquisition of particular proximodistal subdomains and the evolution of their interactions has been essential for the diversification of limb morphology.  相似文献   

9.
The evolutionary success of insects is in part attributable to the tremendous diversification of their mouthparts, which permitted insects to radiate into novel food niches. The developmental genetic basis of mouthpart development has been well studied in at least two insect taxa possessing derived mouthparts, the hemipteran Oncopeltus fasciatus and Drosophila. However, much less is known about the regulation of mouthpart differentiation of the presumed ancestral mandibulate type. Here we aim to extend current insights into the patterning of mandibulate mouthparts through a functional genetic analysis of three leg gap genes, homothorax (hth), dachshund (dac), and Distal-less (Dll), in the dung beetle Onthophagus taurus, a species whose mouthpart arrangement has in part retained, as well as diverged form, the ancestral mandibulate mouthpart type. We specifically include in this study a first functional genetic analysis of the adult labrum, an enigmatic mouthpart whose appendicular origin has been the subject of a long-standing debate. Our results support a functional role of all three patterning genes in the development of the labium, maxilla, as well as the labrum. In contrast, mandible development appeared to rely only on the patterning functions of hth and dac, but not Dll. Here, our results raise the possibility that evolutionary changes in the dac-patterning may have played an important role in the evolutionary transition from a short, triangular mandible adapted for chewing to the elongated, flat, and blade-like mandible of modern filter-feeding scarabaeine beetles. In general, our results contribute to a growing body of studies that suggest that basic patterning genes can contribute to morphological evolution of adult features while maintaining traditional patterning responsibilities at earlier developmental stages or in other body regions.  相似文献   

10.
We isolated the homologue of the Drosophila gene dachshund (dac) from the beetle Tribolium castaneum. Tc'dac is expressed in all appendages except urogomphi and pleuropodia. Tc'dac is also active in the head lobes, in the ventral nervous system, in the primordia of the Malpighian tubules and in bilateral stripes corresponding to the presumptive dorsal midline. Expression of Tc'dac in the labrum lends support to the interpretation that the insect labrum is derived from a metameric appendage. The legs of Tribolium accommodate two Tc'dac domains, of which the more distal one corresponds to the single dac domain described for Drosophila leg discs. In contrast to Drosophila, where this domain is thought to intercalate between the homothorax (hth) and the Distal-less (Dll) domains, in Tribolium it arises from within the Dll domain. In embryos mutant for the Tc'Dll gene we find that the distal Tc'dac domain in the legs, as well as the expression in the labrum, are deleted while the proximal leg domain and the mandibular expression are unaffected. Based on Tc'dac expression in wild-type and mutant embryos, we demonstrate serial homology of the complete mandible with the coxa of the thoracic legs, which affirms the gnathobasic nature of the insect mandible.  相似文献   

11.
The leg genes extradenticle, homothorax, dachshund, and Distal-less define three antagonistic developmental domains in the legs, but not in the antenna, of Drosophila. Here we report the expression patterns of these leg genes in the prosomal appendages of the spider Cupiennius salei. The prosoma of the spider bears six pairs of appendages: a pair of cheliceres, a pair of pedipalps, and four pairs of walking legs. Three types of appendages thus can be distinguished in the spider. We show here that in the pedipalp, the leg-like second prosomal appendage, the patterns are very similar to those in the legs themselves, indicating the presence of three antagonistic developmental domains in both appendage types. In contrast, in the chelicera, the fang-like first prosomal appendage, the patterns are different and there is no evidence for antagonistic domains. Together with data from Drosophila this suggests that leg-shaped morphology of arthropod appendages requires an underlying set of antagonistic developmental domains, whereas other morphologies (e.g. antenna, chelicera) may result from the loss of such antagonistic domains.Edited by M. Akam  相似文献   

12.
The tobacco hornworm Manduca sexta, like many holometabolous insects, makes two versions of its thoracic legs. The simple legs of the larva are formed during embryogenesis, but then are transformed into the more complex adult legs at metamorphosis. To elucidate the molecular patterning mechanism underlying this biphasic development, we examined the expression patterns of five genes known to be involved in patterning the proximal-distal axis in insect legs. In the developing larval leg of Manduca, the early patterning genes Distal-less and Extradenticle are already expressed in patterns comparable to the adult legs of other insects. In contrast, Bric-a-brac and dachshund are expressed in patterns similar to transient patterns observed during early stages of leg development in Drosophila. During metamorphosis of the leg, the two genes finally develop mature expression patterns. Our results are consistent with the hypothesis that the larval leg morphology is produced by a transient arrest in the conserved adult leg patterning process in insects. In addition, we find that, during the adult leg development, some cells in the leg express the patterning genes de novo suggesting that the remodeling of the leg involves changes in the patterning gene regulation.  相似文献   

13.
Our understanding of the developmental mechanisms underlying the vast diversity of arthropod appendages largely rests on the peculiar case of the dipteran Drosophila melanogaster. In this insect, homothorax (hth) and extradenticle (exd) together play a pivotal role in appendage patterning and identity. We investigated the role of the hth homologue in the cricket Gryllus bimaculatus by parental RNA interference. This species has a more generalized morphology than Oncopeltus fasciatus, the one other insect besides Drosophila where homothorax function has been investigated. The Gryllus head appendages represent the morphologically primitive state including insect-typical mandibles, maxillae and labium, structures highly modified or missing in Oncopeltus and Drosophila. We depleted Gb’hth function through parental RNAi to investigate its requirement for proper regulation of other appendage genes (Gb’wingless, Gb’dachshund, Gb’aristaless and Gb’Distalless) and analyzed the terminal phenotype of Gryllus nymphs. Gb’hth RNAi nymphs display homeotic and segmentation defects similar to hth mutants or loss-of-function clones in Drosophila. Intriguingly, however, we find that in Gb’hth RNAi nymphs not only the antennae but also all gnathal appendages are homeotically transformed, such that all head appendages differentiate distally as legs and proximally as antennae. Hence, Gb’hth is not specifically required for antennal fate, but fulfills a similar role in the specification of all head appendages. This suggests that the role of hth in the insect antenna is not fundamentally different from its function as cofactor of segment-specific homeotic genes in more posterior segments.  相似文献   

14.
To understand better both the development and evolution of insect mouthparts, we have compared the expression pattern of several developmentally important genes in insects with either mandibulate or stylate-haustellate mouthparts. Specifically, we examined the expression of the proboscipedia (pb) and Distal-less (Dll) gene products as well as three regulators of pb, Sex combs reduced (Scr), Deformed (Dfd), and cap 'n' collar (cnc). These genes are known to control the identity of cells in the gnathal segments of Drosophila melanogaster and would appear to have similar conserved functions in other insects. Together we have made an atlas of gene expression in the heads of three insects: Thermobia domestica and Acheta domestica, which likely exemplify the mandibulate mouthparts present in the common insect ancestor, and Oncopeltus fasciatus, which has piercing-sucking mouth parts that are typical of the Hemiptera. At the earliest stages of embryogenesis, only the expression of pb was found to differ dramatically between Oncopeltus and the other insects examined, although significant differences were observed later in development. This difference in pb expression reflects an apparent divergence in the specification of gnathal identity between mandibulate and stylate-haustellate mouthparts, which may result from a "phylogenetic homeosis" that occurred during the evolution of the Hemiptera.  相似文献   

15.
The late-third-instar labial disc is comprised of two disc-proper cell layers, one representing mainly the ventral half of the anterior compartment (L-layer) and the other, the dorsal half of the anterior compartment and most, if not all, of the posterior compartment (M-layer). In the L-layer, Distal-less represses homothorax whereas no Distal-less-dependent homothorax repression occurs in the M-layer where Distal-less is coexpressed with homothorax. In wild-type labial discs, clawless, one of the two homeobox genes expressed in distal cells receiving maximum (Decapentaplegic+Wingless) signaling activity in leg and antennal discs, is specifically repressed by proboscipedia. A fate map, inferred from data on basic patterning gene expression in larval and pupal stages and mutant phenotypes, indicates the inner surface of the labial palpus, which includes the pseudotracheal region, to be a derivative of the distal portion of the M-layer expressing wingless, patched, Distal-less and homothorax. The outer surface of the labial palpus with more than 30 taste bristles derives from an L-layer area consisting of dorsal portions of the anterior and posterior compartments, each expressing Distal-less. Our analysis also indicates that, in adults and pupae, the anterior-posterior boundary, dividing roughly equally the outer surface of the distiproboscis, runs along the outer circumference of the inner surface of distiproboscis.  相似文献   

16.
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.  相似文献   

17.
Proximodistal patterning in the Drosophila leg is elaborated from the circular arrangement of the proximal domain expressing escargot and homothorax, and the distal domain expressing Distal-less that are allocated during embryogenesis. The distal domain differentiates multiply segmented distal appendages by activating additional genes such as dachshund. Secreted signaling molecules Wingless and Decapentaplegic, expressed along the anterior-posterior compartment boundary, are required for activation of Distal-less and dachshund and repression of homothorax in the distal domain. However, whether Wingless and Decapentaplegic are sufficient for the circular pattern of gene expression is not known. Here we show that a proximal gene escargot and its activator homothorax regulate proximodistal patterning in the distal domain. Clones of cells expressing escargot or homothorax placed in the distal domain induce intercalary expression of dachshund in surrounding cells and reorient planar cell polarity of those cells. Escargot and homothorax-expressing cells also sort out from other cells in the distal domain. We suggest that inductive cell communication between the proximodistal domains, which is maintained in part by a cell-sorting mechanism, is the cellular basis for an intercalary mechanism of the proximodistal axis patterning of the limb.  相似文献   

18.
19.
Beetle horns represent an evolutionary novelty exhibiting remarkable diversity above and below the species level. Here, we show that four typical appendage patterning genes, extradenticle (exd), homothorax (hth), dachshund (dac), and Distal-less (Dll) are expressed in the context of the development of sexually dimorphic thoracic horns in three Onthophagus species. At least two of these genes, Dll and hth, exhibited expression patterns consistent with a conservation of patterning function during horn development relative to their known roles in the development of insect legs. exd, hth, and dac expression patterns during horn development were largely invariable across species or sexes within species. In contrast, Dll expression was far more discrete and exhibited consistent differences between sexes and species. Most importantly, differences in location and domain size of Dll expression tightly correlated with the degree to which prepupal horn primordia were retained or resorbed before the final adult molt. Our results lend further support to the hypothesis that the origin of beetle horns relied, at least in part, on the redeployment of already existing developmental mechanisms, such as appendage patterning processes and that changes in the exact location and domain size of Dll expression may represent important modifier mechanisms that modulate horn expression in different species or sexes. If correct, this would imply that certain components of genetic basis of horn development may be able to diversify rapidly within lineages and largely independent of phylogenetic distance. We present a first model that integrates presently available data on the genetic regulation of horn development and diversity.  相似文献   

20.
The insect antenna and leg are considered homologous structures, likely to have arisen via duplication and divergence from an ancestral limb. Consistent with this, the antenna and leg are derived from primordia with similar developmental potentials. Nonetheless, the adult structures differ in both form and function. In Drosophila, one conspicuous morphological difference is that the antenna has fewer distal segments than the leg. We propose that this is due in part to the variations in the regulation of bric a brac. bric a brac is required for joint formation, and loss of bric a brac function leads to fusion of distal antennal and leg segments, resulting in fewer total segments. Here, we address how bric a brac is regulated to generate the mature expression patterns of two concentric rings in the antenna versus four concentric rings in the leg. We find that bric a brac expression is activated early throughout most of the Distal-less domain in both antenna and leg and subsequently is restricted to the distal portion and into rings. Although bric a brac expression in the antenna and in all four tarsal rings of the leg requires Distal-less, only the proximal three tarsal rings are Spineless-dependent. Thus bric a brac is regulated differentially even within a single appendage type. The restriction of bric a brac expression to the distal portion of the Distal-less domain is a consequence of negative regulation by distinct sets of genes in different limb types. In the leg, the proximal boundary of bric a brac is established by the medial-patterning gene dachshund, but dachshund alone is insufficient to repress bric a brac, and the expression of the two genes overlaps. In the antenna, the proximal boundary of bric a brac is established by an antenna-specifying gene, homothorax, in conjunction with dachshund and spalt, and there is much less overlap between the bric a brac and the dachshund domains. Thus tissue-specific expression of other patterning genes that differentially repress bric a brac accounts for antenna-leg differences in bric a brac pattern. We propose that the limb type-specific variations in expression of bric a brac repressors contribute to morphological variations by controlling distal limb segment number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号