首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although patterning during regeneration in adult planarians has been studied extensively, very little is known about how the initial planarian body plan arises during embryogenesis. Herein, we analyze the process of embryo patterning in the species Schmidtea polychroa by comparing the expression of genes involved in the establishment of the metazoan body plan. Planarians present a derived ectolecithic spiralian development characterized by dispersed cleavage within a yolk syncytium and an early transient embryo capable of feeding on the maternally supplied yolk cells. During this stage of development, we only found evidence of canonical Wnt pathway, mostly associated with the development of its transient pharynx. At these stages, genes involved in gastrulation (snail) and germ layer determination (foxA and twist) are specifically expressed in migrating blastomeres and those giving rise to the temporary gut and pharyngeal muscle. After yolk ingestion, the embryo expresses core components of the canonical Wnt pathway and the BMP pathway, suggesting that the definitive axial identities are established late. These data support the division of planarian development into two separate morphogenetic stages: a highly divergent gastrulation stage, which segregates the three germ layers and establishes the primary organization of the feeding embryo; and subsequent metamorphosis, based on totipotent blastomeres, which establishes the definitive adult body plan using mechanisms that are similar to those used during regeneration and homeostasis in the adult.  相似文献   

2.
Freshwater planarians exhibit a striking power of regeneration, based on a population of undifferentiated totipotent stem cells, called neoblasts. These somatic stem cells have several characteristics resembling those of germ line stem cells in other animals, such as the presence of perinuclear RNA granules (chromatoid bodies). We have isolated a Tudor domain-containing gene in the planarian species Schmidtea polychroa, Spoltud-1, and show that it is expressed in neoblast cells, germ line cells and central nervous system, and during embryonic development. Within the neoblasts, Spoltud-1 protein is enriched in chromatoid bodies. Spoltud-1 RNAi eliminates protein expression after 3 weeks, and abolishes the power of regeneration of planarians after 7 weeks. Neoblast cells are eliminated by the RNAi treatment, disappearing at the end rather than gradually during the process. Neoblasts with no detectable Spoltud-1 protein are able to proliferate and differentiate. These results suggest that Spoltud-1 is required for long term stem cell self renewal.  相似文献   

3.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The importin alpha family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin alpha proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin alpha proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis.  相似文献   

5.
6.
Recent studies have illustrated multiple differentiation potentials of embryonic stem cells (ESCs), derived from parthenogenetic embryos, to various kinds of cells (all three embryonic germ layers). However, differentiation diversity of the parthenogenetic ESCs (PgESCs) in vivo remains to be elucidated. In the present study, we established mouse PgESC-lines and observed their contribution diversity in vivo by producing chimeric mice using embryos possessing single nucleotide polymorphisms of mitochondrial DNA (mtDNA) as hosts. Based on southern blot analysis using specific probes to detect the SNPs on mtDNA, PgESC-derived mtDNA were contained in many organs such as brain, lung, and heart of the chimeric mouse. We concluded that PgESCs contributed to various internal organs in vivo, and that they were also stably maintained in adult animals.  相似文献   

7.
8.
9.
Triclad flatworms are well studied for their regenerative properties, yet little is known about their embryonic development. We here describe the embryonic development of the triclad Schmidtea polychroa, using histological and immunocytochemical analysis of whole-mount preparations and sections. During early cleavage (stage 1), yolk cells fuse and enclose the zygote into a syncytium. The zygote divides into blastomeres that dissociate and migrate into the syncytium. During stage 2, a subset of blastomeres differentiate into a transient embryonic epidermis that surrounds the yolk syncytium, and an embryonic pharynx. Other blastomeres divide as a scattered population of cells in the syncytium. During stage 3, the embryonic pharynx imbibes external yolk cells and a gastric cavity is formed in the center of the syncytium. The syncytial yolk and the blastomeres contained within it are compressed into a thin peripheral rind. From a location close to the embryonic pharynx, which defines the posterior pole, bilaterally symmetric ventral nerve cord pioneers extend forward. Stage 4 is characterized by massive proliferation of embryonic cells. Large yolk-filled cells lining the syncytium form the gastrodermis. During stage 5 the external syncytial yolk mantle is resorbed and the embryonic cells contained within differentiate into an irregular scaffold of muscle and nerve cells. Epidermal cells differentiate and replace the transient embryonic epidermis. Through stages 6–8, the embryo adopts its worm-like shape, and loosely scattered populations of differentiating cells consolidate into structurally defined organs. Our analysis reveals a picture of S. polychroa embryogenesis that resembles the morphogenetic events underlying regeneration.Edited by D. Tautz  相似文献   

10.
Eya1 and other Eya proteins are important regulators of progenitor proliferation, cell differentiation and morphogenesis in all three germ layers. At present, most of our knowledge of Eya1 distribution is based on in situ hybridization for Eya1 mRNA. However, to begin to dissect the mechanisms underlying Eya1 functions, we need a better understanding of the spatiotemporal distribution of Eya1 proteins during embryonic development, their subcellular localization and their levels of expression in various tissues. Here we report the localization of Eya1 protein throughout embryonic development from neural plate stages to tadpole stages of Xenopus laevis using a specific antibody for Xenopus Eya1. Our study confirms the expression of Eya1 protein in cranial placodes, placodally derived sensory primordia (olfactory epithelium, otic vesicle, lateral line primordia) and cranial ganglia, as well as in somites, secondary heart field and pharyngeal endoderm. In addition, we report here a novel expression of Eya1 proteins in scattered epidermal cells in Xenopus. Our findings also reveal that, while being predominantly expressed in nuclei in most expression domains, Eya1 protein is also localized to the cytoplasm, in particular in the early preplacodal ectoderm, some placode-derived ganglia and a subset of epidermal cells. While some cytoplasmic roles of Eya1 have been previously described in other contexts, the functions of cytoplasmic Eya1 in the preplacodal ectoderm, cranial ganglia and epidermal cells remain to be investigated.  相似文献   

11.
Dead end is a vertebrate-specific RNA-binding protein implicated in germ cell development. We have previously shown that mouse Dead end1 (DND1) is expressed in male embryonic germ cells and directly interacts with NANOS2 to cooperatively promote sexual differentiation of fetal germ cells. In addition, we have also reported that NANOS2 is expressed in self-renewing spermatogonial stem cells and is required for the maintenance of the stem cell state. However, it remains to be determined whether DND1 works with NANOS2 in the spermatogonia. Here, we show that DND1 is expressed in a subpopulation of differentiating spermatogonia and undifferentiated spermatogonia, including NANOS2-positive spermatogonia. Conditional disruption of DND1 depleted both differentiating and undifferentiated spermatogonia; however, the numbers of Asingle and Apaired spermatogonia were preferentially decreased as compared with those of Aaligned spermatogonia. Finally, we found that postnatal DND1 associates with NANOS2 in vivo, independently of RNA, and interacts with some of NANOS2-target mRNAs. These data not only suggest that DND1 is a partner of NANOS2 in undifferentiated spermatogonia as well as in male embryonic germ cells, but also show that DND1 plays an essential role in the survival of differentiating spermatogonia.  相似文献   

12.
13.
The demonstration of germ cell and haploid gamete development from embryonic stem cells (ESCs) in vitro has engendered a unique set of possibilities for the study of germ cell development and the associated epigenetic phenomenon. The process of embryoid body (EB) differentiation, like teratoma formation, signifies a spontaneous differentiation of ESCs into cells of all three germ layers, and it is from these differentiating aggregates of cells that putative primordial germ cells (PGCs) and more mature gametes can be identified and isolated. The differentiation system presented here requires the differentiation of murine ESCs into EBs and the subsequent isolation of PGCs as well as haploid male gametes from EBs at various stages of differentiation. It serves as a platform for studying the poorly understood process of germ cell allocation, imprint erasure and gamete formation, with 4-6 weeks being required to isolate PGCs as well as haploid cells.  相似文献   

14.
15.
16.
17.
X-ray-induced mitotic recombination was used to follow the development and function of the female germ line in Drosophila melanogaster. Clones marked by maternal effect mutations which alter the morphology of the egg [fs(1)K10] or the phenotype of the resulting progeny (maroonlike) were produced in trans-heterozygotes irradiated during embryonic, larval, or pupal development or as 5-day-old adults. Judging from the size of clones induced at the blastoderm stage, only five to ten of the pole cells observed on the surface of the embryo contribute to the germ line. Most of the K10 clones induced during embryonic and larval development were associated with mal twin spots, indicating that both daughters of the irradiated germ cell remained in the germ line and gave rise to eggs in the adult. During larval life the number of cells increases logarithmically and reaches a maximum of 110 at 24 hr after pupation. The same value was obtained for 5-day-old adults. In contrast to the mosaic females produced as embryos and larvae, mosaics obtained after pupal and adult irradiations were of two types, those laying only one K10 egg and those laying several K10 eggs distributed over the lifespan of the adult. This result indicates that the stem cell divisions characteristic of the adult period have begun shortly after pupation. About 9 to 11 days are required for an irradiated stem cell to produce its first clonal K10 egg, and two-thirds of this time is spent in the germarium. Each ovariole possesses on the average two to three functioning stem cells. This multiplicity of stem cells was confirmed by the recovery of mosaic ovarioles when mal heterozygotes irradiated as adults or late larvae were stained for aldehyde oxidase activity.  相似文献   

18.
19.
An oocyte can activate its developmental process without the intervention of the male counterpart. This form of reproduction, known as parthenogenesis, occurs spontaneously in a variety of lower organisms, but not in mammals. However, it must be noted that mammalian oocytes can be activated in vitro, mimicking the intracellular calcium wave induced by the spermatozoon at fertilization, which triggers cleavage divisions and embryonic development. The resultant parthenotes are not capable of developing to term and arrest their growth at different stages, depending on the species. It is believed that this arrest is due to genomic imprinting, which causes the repression of genes normally expressed by the paternal allele. Human parthenogenetic embryos have recently been proposed as an alternative, less controversial source of embryonic stem cell lines, based on their inherent inability to form a new individual. However many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. Limited information is available in particular on the consequences of the lack of centrioles and on the parthenote's ability to assemble a new embryonic centrosome in the absence of the sperm centriole. Indeed, in lower species, successful parthenogenesis largely depends upon the oocyte's ability to regenerate complete and functional centrosomes in the absence of the material supplied by a male gamete, while the control of this event appears to be less stringent in mammalian cells. In an attempt to better elucidate some of these aspects, parthenogenetic cell lines, recently derived in our laboratory, have been characterized for their pluripotency. In vitro and in vivo differentiation plasticity have been assessed, demonstrating the ability of these cells to differentiate into cell types derived from the three germ layers. These results confirmed common features between uni- and bi-parental embryonic stem cells. However data obtained with parthenogenetic cells indicate the presence of an intrinsic deregulation of the mechanisms controlling proliferation vs. differentiation and suggest their uni-parental origin as a possible cause.  相似文献   

20.
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号