首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of binding reduced tuna mitochondrial cytochrome c to negatively charged lipid bilayer vesicles at low ionic strength on the kinetics of electron transfer to various oxidants was studied by stopped-flow spectrophotometry. Binding strongly stimulated (up to 100-fold) the rate of reaction with the positively charged cobalt phenanthroline ion, whereas the rate of reaction with the negatively charged ferricyanide ion was greatly inhibited (up to 60-fold), as compared with the same systems either at high ionic strength or at low ionic strength either in the presence of electrically neutral vesicles or in the absence of vesicles. Reactions of tuna cytochrome c with uncharged or electrically neutral oxidants such as benzoquinone and Rhodospirillum rubrum cytochrome c2 were unaffected by binding to vesicles, suggesting little or no effect of membrane association on cytochrome structure or accessibility of the heme center. The kinetic effects were largest at lower cytochrome c to vesicle ratios, where there was a greater degree of exposure of negatively charged regions on the membrane. The reduction of cobalt phenanthroline and ferricyanide by bound cytochrome c proceeded by nonexponential kinetics, as compared with the monophasic kinetics observed in the absence of vesicles. This was probably due to the heterogeneous distribution of vesicle sizes which exists at a given lipid to protein ratio. Nonlinear oxidant concentration dependencies were observed for cobalt phenanthroline oxidation of membrane-bound cytochrome c, consistent with a (minimal) two-step kinetic mechanism involving association of the oxidant with the membrane followed by electron transfer. Based on a comparison of second-order rate constants as a function of lipid to protein mole ratio, binding of cytochrome c to the bilayer increased the efficiency of the cobalt phenanthroline reaction by a factor of approximately 500 at the highest lipid:protein ratio used. The results suggest a mechanism involving attractive and repulsive electrostatic interactions between the negatively charged bilayer and the electrically charged oxidants, which increase or decrease their effective concentrations at the membrane surface.  相似文献   

2.
B I Lee  R Dua  W Cho 《Biochemistry》1999,38(24):7811-7818
The catalytic steps of the phospholipase A2 (PLA2)-catalyzed hydrolysis of phospholipids are preceded by interfacial binding. Among various pancreatic PLA2s, bovine pancreatic PLA2 (bpPLA2) has a unique interfacial binding mode in which Lys-56 plays an important role in its binding to anionic lipid surfaces. To identify the structural determinant of this unique interfacial binding mode of bpPLA2, we systematically mutated bpPLA2 and measured the effects of mutations on its interfacial binding and activity. First, different cationic clusters were generated in the amino-terminal alpha-helix by the N6R, G7K, and N6R/G7K mutations. These mutations enhanced the binding of bpPLA2 to anionic liposomes up to 15-fold. For these mutants, however, the K56E mutation still caused a large drop in interfacial affinity for and activity toward anionic liposomes, indicating that the generation of a cationic patch in the amino-terminal alpha-helix of bpPLA2 did not change its interfacial binding mode. Second, residues 62-66 that form a part of the pancreatic loop were deleted. For this deletion mutant (Delta62-66), which was as active as wild-type toward anionic liposomes, the K56E and K116E mutations (Delta62-66/K56E and Delta62-66/K116E) did not have significant effects on interfacial affinity. In contrast, the K10E mutation showed a much larger decrease in interfacial affinity (10-fold), indicating the deletion of residues 62-66 caused a major change in the interfacial binding mode. Finally, hydrophobic residues in positions 63 and 65 were replaced by bulkier ones (V63F and V63F/V65L) to pinpoint the structural determinant of the interfacial binding mode of bpPLA2. The effects of K10E and K56E mutations on the interfacial affinity and activity of these mutants showed that Val-63 and Val-65 of bpPLA2 are the structural determinant of its unique interfacial binding mode and that relatively conservative substitutions at these positions result in large changes in the interfacial binding mode among mammalian pancreatic PLA2s. Taken together, this study reveals how minor structural differences among homologous PLA2s can lead to distinct interfacial binding behaviors.  相似文献   

3.
《Biophysical journal》2021,120(17):3776-3786
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli inside-out vesicles, or Saccharomyces cerevisiae mitochondria in vitro or in situ, respectively. The shapes of the emission spectra for these anionic phospholipids were also found to be indistinguishable. Thus, TTAPE-Me is not suitable for detection, visualization, and localization of CL in the presence of other anionic lipids present in substantial physiological amounts. Our experiments and complementary molecular dynamics simulations suggest that fluorescence intensity of TTAPE-Me is regulated by dynamic equilibrium between emitting dye aggregates, stabilized by unspecific but thermodynamically favorable electrostatic interactions with anionic lipids, and nonemitting dye monomers. These results should be taken into consideration when interpreting past and future results of CL detection and localization studies with this probe in vitro and in vivo. Provided methodology emphasizes minimal experimental requirements, which should be considered as a guideline during the development of novel lipid-specific probes.  相似文献   

4.
Mitochondrial cytochrome c associates with the phosphoplipid cardiolipin (CL) through a combination of electrostatic and hydrophobic interactions. The latter occurs by insertion into cytochrome c of an acyl chain, resulting in the dissociation of the axial Met-80 heme-iron ligand. The resulting five coordinate cytochrome c/CL complex has peroxidatic properties leading to peroxidation of CL and dissociation of the complex. These events are considered to be pre-apoptotic and culminate with release of cytochrome c from the mitochondria into the cytoplasm. Two distinct surface regions on cytochrome c have been suggested to mediate CL acyl chain insertion and this study has probed one of these regions. We have constructed a series of alanine mutants aimed at disrupting a surface cleft formed between residues 67-71 and 82-85. The physicochemical properties, peroxidase activity, CL binding, and kinetics of carbon monoxide (CO) binding to the ferrous cytochrome c/CL complex have been assessed for the individual mutants. Our findings reveal that the majority of mutants are capable of binding CL in the same apparent stoichiometry as the wild-type protein, with the extent to which the Met-80 ligand is bound in the ferrous cytochrome c/CL complex being mutant specific at neutral pH. Mutation of the species conserved Arg-91 residue, that anchors the cleft, results in the greatest changes to physicochemical properties of the protein leading to a change in the CL binding ratio required to effect structural changes and to the ligand-exchange properties of the ferrous cytochrome c/CL complex.  相似文献   

5.
Induction of the peroxidase activity of cytochrome c (cyt c) by cardiolipin (CL) and H(2)O(2) in mitochondria is suggested to be a key event in early apoptosis. Although electrostatic interaction between the positively charged cyt c and negatively charged CL is a predominant force behind the formation of a specific cyt c-CL complex and sequential induction of the peroxidase activity, molecular mechanisms of hydrophobic interactions involving the fatty acyl chains of CL remain to be investigated. To elucidate the function of the acyl chains, particularly the role of the double bond, we synthesized a variety of CL analogues and examined their peroxidase inducing activity. Irrespective of the number of double bonds in the acyl chains, the peroxidase activity of cyt c induced by liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and a different CL (9:1 molar ratio) was similar, except for that of 1,1',2,2'-tetrastearoylcardiolipin (TSCL, C18:0)-containing liposomes. The peroxidase inducing activity of TSCL-containing liposomes was 3-4-fold greater than that of other CL-containing liposomes. The peroxidase activity induced by all CL-containing liposomes was much lower at high ionic strengths than that at low ionic strengths because of diminution of the electrostatic interaction. The peroxidase inducing effects of various CL-containing liposomes were related well to their ability to associate with cyt c. Thus, our results revealed that at low CL levels, the saturated acyl chain of CL is favorable for the activation of peroxidase activity of CL-bound cyt c and the proposed critical role of the double bond is not a general feature of the cyt c-CL interaction. The polarity of the membrane surface of TSCL-containing liposomes was slightly, but significantly, lower than that of other CL-containing liposomes, suggesting that the higher activating ability of TSCL-containing liposomes may be due to a reduced level of hydration of the polar head region reflecting tighter packing of the fully saturated acyl chains. Moreover, using CL analogues in which a central glycerol head moiety was modified, we revealed that the natural structure of the head moiety is not critical for the formation of the active cyt c-CL complex. The effects of the CL content of the liposomal membrane on the cyt c-CL interaction are discussed.  相似文献   

6.
Spinach plastocyanin binds to both electrically neutral and positively charged lipid bilayer vesicles, whereas cytochrome c only binds electrostatically to negatively charged vesicles. Laser flash photolysis using lumiflavin semiquinone as a reductant demonstrates that the reactivity of plastocyanin is increased as much as 6-fold when it is membrane bound whereas the rate constant for cytochrome c reduction is decreased by approximately a factor of 3. Membrane-bound plastocyanin reduction occurs via a two-step mechanism, probably involving prior association of lumiflavin semiquinone with the bilayer. In contrast, cytochrome c reduction in the membrane-bound state follows simple second-order kinetics, implying that the redox site in the bound state is still accessible to lumiflavin semiquinone in solution, although the rate constant is decreased by approximately 3-fold. These results are interpreted as indicating that the bilayer-protein interaction with plastocyanin leads to a steric blockage of the electron-transfer site from the aqueous phase. Little or no hindrance of the redox site occurs with cytochrome c, suggesting a high degree of mobility of this protein on the bilayer surface. Although the increase in plastocyanin reactivity upon binding to the bilayer is quite interesting, its cause remains unclear and requires further study. The results illustrate the utility of laser flash photolysis as a probe of membrane-protein interactions.  相似文献   

7.
Trivalent thallium (Tl(III)) is a highly toxic heavy metal through not completely understood mechanisms. Previously, we demonstrated that Tl(III) causes mitochondrial depolarization in PC12 cells leading to a decrease in cell viability. Given the role of the phospholipid cardiolipin (CL) in mitochondrial events, we evaluated in vitro the short- (2 min) and long- (60 min) time effects of Tl(III) (1-75 μM) on CL-containing membranes physical properties, and the consequences on cytochrome c binding to CL. After 2 min of incubation, Tl(III) significantly decreased liposome surface potential, lipid packing, and hydration of phosphatidylcholine:CL liposomes, while CL pK2 decreased from 9.8 to 8.2. The magnitude of these changes was even higher after 60 min of incubation. While no Tl(III) was found bound to membranes, Tl(I) was present in the samples. Accordingly, significant oxidative damage to both CL fatty acids and polar headgroup was observed. Cytochrome c binding to CL was decreased in Tl(III)-treated liposomes. The present results indicate that Tl(III) interaction with CL-containing membranes affected their physical properties, caused lipid oxidation and CL hydrolysis, and resulted in a decrease of cytochrome c binding. If occurring in vivo, these effects of Tl(III) could partially account for mitochondrial dysfunction in cells exposed to this metal.  相似文献   

8.
The rate of reduction of cytochrome c by ascorbate and by 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine was examined as a function of ionic strength and of binding to phospholipid vesicles (liposomes). Binding of cytochrome c to liposomes, which occursat low ionic strength, decreases the rate of reduction by ascorbate by a factor of up to 100, which can be primarily explained on electrostatic grounds. In the absence of liposomes, kinetics of reduction by the neutral pteridine derivative showed no ionic strength dependence. Binding of cytochrome c to liposomes increased the rate of reduction by pteridine. An estimation of the binding constant of cytochrome c to liposomes at 0.06 M ionic strength, pH 7, is given.  相似文献   

9.
Trivalent thallium (Tl(III)) is a highly toxic heavy metal through not completely understood mechanisms. Previously, we demonstrated that Tl(III) causes mitochondrial depolarization in PC12 cells leading to a decrease in cell viability. Given the role of the phospholipid cardiolipin (CL) in mitochondrial events, we evaluated in vitro the short- (2 min) and long- (60 min) time effects of Tl(III) (1-75 microM) on CL-containing membranes physical properties, and the consequences on cytochrome c binding to CL. After 2 min of incubation, Tl(III) significantly decreased liposome surface potential, lipid packing, and hydration of phosphatidylcholine:CL liposomes, while CL pK2 decreased from 9.8 to 8.2. The magnitude of these changes was even higher after 60 min of incubation. While no Tl(III) was found bound to membranes, Tl(I) was present in the samples. Accordingly, significant oxidative damage to both CL fatty acids and polar headgroup was observed. Cytochrome c binding to CL was decreased in Tl(III)-treated liposomes. The present results indicate that Tl(III) interaction with CL-containing membranes affected their physical properties, caused lipid oxidation and CL hydrolysis, and resulted in a decrease of cytochrome c binding. If occurring in vivo, these effects of Tl(III) could partially account for mitochondrial dysfunction in cells exposed to this metal.  相似文献   

10.
Dendrimers are individual macromolecular compounds having a great potential for biomedical application. The key step of the cell penetration by dendrimers is the interaction with lipid bilayer. Here, the interaction between cationic pyridylphenylene dendrimer of third generation (D350+) and multicomponent liquid (CL/POPC), solid (CL/DPPC) and cholesterol-containing (CL/POPC/30% Chol) anionic liposomes was investigated by dynamic light scattering, fluorescence spectroscopy, conductometry, calorimetric studies and molecular dynamic (MD) simulations. Microelectrophoresis and MD simulations revealed the interaction is electrostatic and reversible with only part of pyridinium groups of dendrimers involved in binding with liposomes. The ability of dendrimer molecules to migrate between liposomes was discovered by the labeling liposomes with Rhodamine B. The phase state of the lipid membrane and the incorporation of cholesterol into the lipid bilayer were found to not affect the mechanism of the dendrimer - liposome complex formation. Rigid dendrimer adsorption on liposomal surface does not induce the formation of significant defects in the lipid membrane pave the way for possible biological application of pyridylphenylene dendrimers.  相似文献   

11.
The kinetics of the reversible binding of cyanide by the ferric cytochrome c' from Chromatium vinosum have been studied over the pH range 6.9-9.6. The reaction is extremely slow at neutral pH compared to the reactions of other high-spin ferric heme proteins with cyanide. The observed bimolecular rate constant at pH 7.0 is 2.25 X 10(-3) M-1 s-1, which is approximately 10(7)-fold slower than that for peroxidases, approximately 10(5)-fold slower than those for hemoglobin and myoglobin, and approximately 10(2)-fold to approximately 10(3)-fold slower than that recently reported for the Glycera dibranchiata hemoglobin, which has anomalously slow cyanide rate constants of 4.91 X 10(-1), 3.02 X 10(-1), and 1.82 M-1 s-1 for components II, III, and IV, respectively [Mintorovitch, J., & Satterlee, J. D. (1988) Biochemistry 27, 8045-8050; Mintorovitch, J., Van Pelt, D., & Satterlee, J. D. (1989) Biochemistry 28, 6099-6104]. The unusual ligand binding property of this cytochrome c' is proposed to be associated with a severely hindered heme coordination site. Cyanide binding is also characterized by a nonlinear cyanide concentration dependence of the observed rate constant at higher pH values, which is interpreted as involving a change in the rate-determining step associated with the formation of an intermediate complex between the cytochrome c' and cyanide prior to coordination. The pH dependence of both the binding constant for the formation of the intermediate complex and the association rate constant for the subsequent coordination to the heme can be attributed to the ionization of HCN, where cyanide ion binding is the predominant process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Li L  Storm P  Karlsson OP  Berg S  Wieslander A 《Biochemistry》2003,42(32):9677-9686
1,2-Diacylglycerol 3-glucosyltransferase is associated with the membrane surface catalyzing the synthesis of the major nonbilayer-prone lipid alpha-monoglucosyl diacylglycerol (MGlcDAG) from 1,2-DAG in the cell wall-less Acholeplasma laidlawii. Phosphatidylglycerol (PG), but not neutral or zwitterionic lipids, seems to be essential for an active conformation and function of the enzyme. Surface plasmon resonance analysis was employed to study association of the enzyme with lipid bilayers. Binding kinetics could be well fitted only to a two-state model, implying also a (second) conformational step. The enzyme bound less efficiently to liposomes containing only zwitterionic lipids, whereas increasing molar fractions of the anionic PG or cardiolipin (CL) strongly promoted binding by improved association (k(a1)), and especially a decreased rate of return (k(d2)) from the second state. This yielded a very low overall dissociation constant (K(D)), corresponding to an essentially irreversible membrane association. Both liposome binding and consecutive activity of the enzyme correlated with the PG concentration. The importance of the electrostatic interactions with anionic lipids was shown by quenching of both binding and activity with increasing NaCl concentrations, and corroborated in vivo for an active enzyme-green fluorescent protein hybrid in Escherichia coli. Nonbilayer-prone lipids substantially enhanced enzyme-liposome binding by promoting a changed conformation (decreasing k(d2)), similar to the anionic lipids, indicating the importance of hydrophobic interactions and a curvature packing stress. For CL and the nonbilayer lipids, effects on enzyme binding and consecutive activity were not correlated, suggesting a separate lipid control of activity. Similar features were recorded with polylysine (cationic) and polyglutamate (anionic) peptides present, but here probably dependent on the selective charge interactions with the enzyme N- and C-domains, respectively. A lipid-dependent conformational change and PG association of the enzyme were verified by circular dichroism, intrinsic tryptophan, and pyrene-probe fluorescence analyses, respectively. It is concluded that an electrostatic association of the enzyme with the membrane surface is accompanied by hydrophobic interactions and a conformational change. However, specific lipids, the curvature packing stress, and proteins or small molecules bound to the enzyme can modulate the activity of the bound A. laidlawii MGlcDAG synthase.  相似文献   

13.
The peripheral membrane ATPase MinD is a component of the Min system responsible for correct placement of the division site in Escherichia coli cells. By rapidly migrating from one cell pole to the other, MinD helps to block unwanted septation events at the poles. MinD is an amphitropic protein that is localized to the membrane in its ATP-bound form. A C-terminal domain essential for membrane localization is predicted to be an amphipathic alpha-helix with hydrophobic residues interacting with lipid acyl chains and cationic residues on the opposite face of the helix interacting with the head groups of anionic phospholipids (Szeto, T. H., Rowland, S. L., Rothfield, L. I., and King, G. F. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15693-15698). To investigate whether E. coli MinD displays a preference for anionic phospholipids, we first examined the localization dynamics of a green fluorescent protein-tagged derivative of MinD expressed in a mutant of E. coli that lacks phosphatidylethanolamine. In these cells, which contain only anionic phospholipids (phosphatidylglycerol and cardiolipin), green fluorescent protein-MinD assembled into dynamic focal clusters instead of the broad zones typical of cells with normal phospholipid content. In experiments with liposomes composed of only zwitterionic, only anionic, or a mixture of anionic and zwitterionic phospholipids, purified MinD bound to these liposomes in the presence of ATP with positive cooperativity with respect to the protein concentration and exhibited Hill coefficients of about 2. Oligomerization of MinD on the liposome surface also was detected by fluorescence resonance energy transfer between MinD molecules labeled with different fluorescent probes. The affinity of MinD-ATP for anionic liposomes as well as liposomes composed of both anionic and zwitterionic phospholipids increased 9- and 2-fold, respectively, relative to zwitterionic liposomes. The degree of acyl chain unsaturation contributed positively to binding strength. These results suggest that MinD has a preference for anionic phospholipids and that MinD oscillation behavior, and therefore cell division site selection, may be regulated by membrane phospholipid composition.  相似文献   

14.
Protein purification by affinity binding to unilamellar vesicles   总被引:1,自引:0,他引:1  
A novel purification technique is proposed which employs affinity-ligand-modified liposomes to specifically purify bioactive macromolecules from solution. This process is demonstrated with avidin as the model biomolecule and biotin as the affinity ligand. Biotin is covalently bound to the surface of small unilamellar vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylethanolamine (DMPE). The number of accessible binding sites on the liposomes is determined by titration with avidin, and the kinetics of binding are evaluated by monitoring the concentration of free avidin in solution after the addition of biotinylated liposomes. The specificity of the process is determined by following the affinity binding of avidin to biotinylated liposomes in the presence of model impurities (i.e., lysozyme and cytochrome C). Liposome-bound avidin is separated from the impurities by ultrafiltration through a membrane which retains the liposomes.  相似文献   

15.
The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.  相似文献   

16.
The oxidation kinetics of Cyt c1 and c2 have been measured in normal chromatophores and in chromatophores fused with liposomes in order to increase the internal volume. The kinetics of Cyt c1 oxidation were found to be dependent on Cyt c2 concentration. The initial rate of Cyt c1 oxidation decreased after fusion by a factor of about two, indicating a process dependent on diffusion. The results do not allow a clear distinction between a diffusion of Cyt c2 along the inner membrane surface or through the inner volume of the vesicle; two- and three-dimensional models are discussed. In contrast to Cyt c1, the kinetics of oxidation of Cyt c2 were not influenced by changes in concentration. It is concluded that reduced Cyt c2 is preferentially bound to the reaction centers. A binary pattern as a function of flash number from the dark-adapted state was measured in the turn-over of the two-electron gate of the reaction center. In chromatophores with more than 0.5 cytochrome c2 molecules per reaction center, this binary pattern titrated out with a midpoint around 340 mV on reduction of the suspension. In experiments with chromatophores with a low Cyt c2 content, or with spheroplast-derived vesicles which had lost Cyt c2, the binary oscillation in the two-electron gate could be observed at much lower potentials. The results suggest that the binding of reduced cytochrome c2 modifies the behavior of the two-electron gate. A model in which reaction center dimers are stabilized by Cyt c2 is proposed to explain the effect.  相似文献   

17.
Upon interaction with anionic phospholipids, particularly mitochondria-specific cardiolipin (CL), cytochrome c (cyt c) loses its tertiary structure and its peroxidase activity dramatically increases. CL-induced peroxidase activity of cyt c has been found to be important for selective CL oxidation in cells undergoing programmed death. During apoptosis, the peroxidase activity and the fraction of CL-bound cyt c markedly increase, suggesting that CL may act as a switch to regulate cyt c's mitochondrial functions. Using cyclic voltammetry and equilibrium redox titrations, we show that the redox potential of cyt c shifts negatively by 350-400 mV upon binding to CL-containing membranes. Consequently, functions of cyt c as an electron transporter and cyt c reduction by Complex III are strongly inhibited. Further, CL/cyt c complexes are not effective in scavenging superoxide anions and are not effectively reduced by ascorbate. Thus, both redox properties and functions of cyt c change upon interaction with CL in the mitochondrial membrane, diminishing cyt c's electron donor/acceptor role and stimulating its peroxidase activity.  相似文献   

18.
The adipocyte fatty acid-binding protein (AFABP) is believed to transfer unesterified fatty acids (FA) to phospholipid membranes via a collisional mechanism that involves ionic interactions between lysine residues on the protein surface and phospholipid headgroups. This hypothesis is derived largely from kinetic analysis of FA transfer from AFABP to membranes. In this study, we examined directly the binding of AFABP to large unilamellar vesicles (LUV) of differing phospholipid compositions. AFABP bound LUV containing either cardiolipin or phosphatidic acid, and the amount of protein bound depended upon the mol % anionic phospholipid. The K(a) for CL or PA in LUV containing 25 mol % of these anionic phospholipids was approximately 2 x 10(3) M(-1). No detectable binding occurred when AFABP was mixed with zwitterionic membranes, nor when acetylated AFABP in which surface lysines had been chemically neutralized was mixed with anionic membranes. The binding of AFABP to acidic membranes depended upon the ionic strength of the incubation buffer: >/=200 mM NaCl reduced protein-lipid complex formation in parallel with a decrease in the rate of FA transfer from AFABP to negatively charged membranes. It was further found that AFABP, but not acetylated AFABP, prevented cytochrome c, a well characterized peripheral membrane protein, from binding to membranes. These results directly demonstrate that AFABP binds to anionic phospholipid membranes and suggest that, although generally described as a cytosolic protein, AFABP may behave as a peripheral membrane protein to help target fatty acids to and/or from intracellular sites of utilization.  相似文献   

19.
Zhao G  Jorns MS 《Biochemistry》2006,45(19):5985-5992
Monomeric sarcosine oxidase is a flavoenzyme that catalyzes the oxidation of the methyl group in sarcosine (N-methylglycine). Rapid reaction kinetic studies under anaerobic conditions at pH 8.0 show that the enzyme forms a charge transfer Michaelis complex with sarcosine (E-FAD(ox).sarcosine) that exhibits an intense long-wavelength absorption band (lambda(max) = 516 nm, epsilon(516) = 4800 M(-)(1) cm(-)(1)). Since charge transfer interaction with sarcosine as donor is possible only with the anionic form of the amino acid, the results indicate that the pK(a) of enzyme-bound sarcosine must be considerably lower than the free amino acid (pK(a) = 10.0). No redox intermediate is detectable during sarcosine oxidation, as judged by the isosbestic spectral course observed for conversion of E-FAD(ox).sarcosine to reduced enzyme at 25 or 5 degrees C. The limiting rate of the reductive half-reaction at 25 degrees C (140 +/- 3 s(-)(1)) is slightly faster than turnover (117 +/- 3 s(-)(1)). The kinetics of formation of the Michaelis charge transfer complex can be directly monitored at 5 degrees C where the reduction rate is 4.5-fold slower and complex stability is increased 2-fold. The observed rate of complex formation exhibits a hyperbolic dependence on sarcosine concentration with a finite Y-intercept, consistent with a mechanism involving formation of an initial complex followed by isomerization to yield a more stable complex. Similar results are obtained for charge transfer complex formation with methylthioacetate. The observed kinetics are consistent with structural studies which show that a conformational change occurs upon binding of methylthioacetate and other competitive inhibitors.  相似文献   

20.
Bovine heart cytochrome-c oxidase was reconstituted in liposomes and the kinetics of cytochrome c oxidation were measured by the polarographic and photometric method under uncoupled conditions in the presence of various polyvalent anions. In order to distinguish between specific and unspecific ionic effects of ATP, the photolabelling reagent 8-azido-ATP was applied. Covalently bound ATP at the enzyme complex caused the same increase of Km for cytochrome c as free ATP, if measured by the photometric assay. The increase of Km by photolabelling with 8-azido-ATP was completely prevented by ATP, but not by ADP. The data indicate the occurrence of a specific binding site for ATP at the cytosolic side of cytochrome-c oxidase, which, after binding of ATP, changes the kinetics of cytochrome c oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号