首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal CHIP proteins are chaperone-dependent E3 ubiquitin ligases that physically interact with Hsp70, Hsp90 and proteasome, promoting degradation of a selective group of non-native or damaged proteins in animal cells. The plant CHIP-like protein, AtCHIP, also plays important roles in protein turnover metabolism. AtCHIP interacts with a proteolytic subunit, ClpP4, of the chloroplast Clp protease in vivo, and ubiquitylates ClpP4 in vitro. The steady-state level of ClpP4 is reduced in AtCHIP-overexpressing plants under high-intensity light conditions, suggesting that AtCHIP targets ClpP4 for degradation and thereby regulates the Clp proteolytic activity in chloroplasts under certain stress conditions. Overexpression of ClpP4 in Arabidopsis leads to chlorotic phenotypes in transgenic plants, and chloroplast structures in the chlorotic tissues of ClpP4-overexpressing plants are abnormal and largely devoid of thylakoid membranes, suggesting that ClpP4 plays a critical role in chloroplast structure and function. As AtCHIP is a cytosolic protein that has been shown to play an important role in regulating an essential chloroplast protease, this research provides new insights into the regulatory networks controlling protein turnover catabolism in chloroplasts.  相似文献   

2.
The Arabidopsis E3 ligase AtCHIP was found to interact with FtsH1, a subunit of the chloroplast FtsH protease complex. FtsH1 can be ubiquitylated by AtCHIP in vitro, and the steady-state level of FtsH1 is reduced in AtCHIP-over-expressing plants under high-intensity light conditions, suggesting that the ubiquitylation of FtsH1 by AtCHIP might lead to the degradation of FtsH1 in vivo. Furthermore, the steady-state level of another subunit of the chloroplast FtsH protease complex, FtsH2, is also reduced in AtCHIP-over-expressing plants under high-intensity light conditions, and FtsH2 interacts physically with AtCHIP in vivo, suggesting the possibility that FtsH2 is also a substrate protein for AtCHIP in plant cells. A substrate of FtsH protease in vivo, the photosystem II reaction center protein D1, is not efficiently removed by FtsH in AtCHIP-over-expressing plants under high-intensity light conditions, supporting the assumption that FtsH subunits are substrates of AtCHIP in vivo, and that AtCHIP over-expression may lead to a reduced level of FtsH in chloroplasts. AtCHIP interacts with cytosolic Hsp70 and the precursors of FtsH1 and FtsH2 in the cytoplasm, and Hsp70 also interacts with FtsH1, and these protein-protein interactions appear to be increased under high-intensity light conditions, suggesting that Hsp70 might be partly responsible for the increased degradation of the substrates of Hsp70, such as FtsH1 and FtsH2, in AtCHIP-over-expressing plants under high-intensity light conditions. Therefore, AtCHIP, together with Hsp70, may play an important role in protein quality control in chloroplasts.  相似文献   

3.
4.
The RAD6 (UBC2) gene of Saccharomyces cerevisiae which is involved in DNA repair, induced mutagenesis, and sporulation, encodes a ubiquitin-conjugating enzyme (E2). Since the RAD6 gene product can transfer ubiquitin directly to histones in vitro without the participation of a ubiquitin protein ligase (E3), it has been suggested that in vivo it also acts by the unassisted conjugation of ubiquitin to histones or to other target proteins. Here we show that the RAD6 protein can ligate ubiquitin in vitro to a hitherto unknown set of exogenous target proteins (alpha-, beta-, and kappa-casein and beta-lactoglobulin) when supplemented by a putative ubiquitin protein ligase (E3-R) from S. cerevisiae. RAD6 supplemented with E3-R ligates 1 or, sometimes, 2 ubiquitin molecules to the target protein molecule. UBC3 (CDC34) protein in the presence of E3-R has barely detectable activity on the non-histone substrates. Other ubiquitin-conjugating enzymes tested (products of the UBC1 and UBC4 genes) do not cooperate with E3-R in conjugating ubiquitin to the same substrates. Thus, E3-R apparently interacts selectively with RAD6 protein. These findings suggest that some of the in vivo activities of the RAD6 gene may involve E3-R.  相似文献   

5.
6.
Pairing of a given E3 ubiquitin ligase with different E2s allows synthesis of ubiquitin conjugates of different topologies. While this phenomenon contributes to functional diversity, it remains largely unknown how a single E3 ubiquitin ligase recognizes multiple E2s, and whether identical structural requirements determine their respective interactions. The E3 ubiquitin ligase RNF8 that plays a critically important role in transducing DNA damage signals, interacts with E2s UBCH8 and UBC13, and catalyzes both K48- and K63-linked ubiquitin chains. Interestingly, we report here that a single-point mutation (I405A) on the RNF8 polypeptide uncouples its ability in catalyzing K48- and K63-linked ubiquitin chain formation. Accordingly, while RNF8 interacted with E2s UBCH8 and UBC13, its I405A mutation selectively disrupted its functional interaction with UBCH8, and impaired K48-based poly-ubiquitylation reactions. In contrast, RNF8 I405A preserved its interaction with UBC13, synthesized K63-linked ubiquitin chains, and assembled BRCA1 and 53BP1 at sites of DNA breaks. Together, our data suggest that RNF8 regulates K48- and K63-linked poly-ubiquitylation via differential RING-dependent interactions with its E2s UBCH8 and UBC13, respectively.  相似文献   

7.
Kraft E  Stone SL  Ma L  Su N  Gao Y  Lau OS  Deng XW  Callis J 《Plant physiology》2005,139(4):1597-1611
Attachment of ubiquitin to substrate proteins is catalyzed by the three enzymes E1, E2 (ubiquitin conjugating [UBC]), and E3 (ubiquitin ligase). Forty-one functional proteins with a UBC domain and active-site cysteine are predicted in the Arabidopsis (Arabidopsis thaliana) genome, which includes four that are predicted or shown to function with ubiquitin-like proteins. Only nine were previously characterized biochemically as ubiquitin E2s. We obtained soluble protein for 22 of the 28 uncharacterized UBCs after expression in Escherichia coli and demonstrated that 16 function as ubiquitin E2s. Twelve, plus three previously characterized ubiquitin E2s, were also tested for the ability to catalyze ubiquitination in vitro in the presence of one of 65 really interesting new gene (RING) E3 ligases. UBC22, UBC19-20, and UBC1-6 had variable levels of E3-independent activity. Six UBCs were inactive with all RINGs tested. Closely related UBC8, 10, 11, and 28 were active with the largest number of RING E3s and with all RING types. Expression analysis was performed to determine whether E2s or E3s were expressed in specific organs or under specific environmental conditions. Closely related E2s show unique patterns of expression and most express ubiquitously. Some RING E3s are also ubiquitously expressed; however, others show organ-specific expression. Of all the organs tested, RING mRNAs are most abundant in floral organs. This study demonstrates that E2 diversity includes examples with broad and narrow specificity toward RINGs, and that most ubiquitin E2s are broadly expressed with each having a unique spatial and developmental pattern of expression.  相似文献   

8.
The heterodimeric ubiquitin conjugating enzyme (E2) UBC13-UEV mediates polyubiquitylation through lysine 63 of ubiquitin (K63), rather than lysine 48 (K48). This modification does not target proteins for proteasome-dependent degradation. Searching for potential regulators of this variant polyubiquitylation we have identified four proteins, namely RNF8, KIA00675, KF1, and ZNRF2, that interact with UBC13 through their RING finger domains. These domains can recruit, in addition to UBC13, other E2s that mediate canonical (K48) polyubiquitylation. None of these RING finger proteins were known previously to recruit UBC13. For one of these proteins, RNF8, we show its activity as a ubiquitin ligase that elongates chains through either K48 or K63 of ubiquitin, and its nuclear co-localization with UBC13. Thus, our screening reveals new potential regulators of non-canonical polyubiquitylation.  相似文献   

9.
BAG5 inhibits parkin and enhances dopaminergic neuron degeneration   总被引:9,自引:0,他引:9  
Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, are the major cause of early-onset Parkinson's disease (PD). Decreases in parkin activity may also contribute to neurodegeneration in sporadic forms of PD. Here, we show that bcl-2-associated athanogene 5 (BAG5), a BAG family member, directly interacts with parkin and the chaperone Hsp70. Within this complex, BAG5 inhibits both parkin E3 ubiquitin ligase activity and Hsp70-mediated refolding of misfolded proteins. BAG5 enhances parkin sequestration within protein aggregates and mitigates parkin-dependent preservation of proteasome function. Finally, BAG5 enhances dopamine neuron death in an in vivo model of PD, whereas a mutant that inhibits BAG5 activity attenuates dopaminergic neurodegeneration. This contrasts with the antideath functions ascribed to BAG family members and suggests a potential role for BAG5 in promoting neurodegeneration in sporadic PD through its functional interactions with parkin and Hsp70.  相似文献   

10.

Background  

Ubiquitin (E3) ligases interact with specific ubiquitin conjugating (E2) enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it is important to understand the basis of specificity in E2:E3 interactions. The E3 ligase CHIP interacts with Hsp70 and Hsp90 and ubiquitinates client proteins that are chaperoned by these heat shock proteins. CHIP interacts with two types of E2 enzymes, UbcH5 and Ubc13-Uev1a. It is unclear, however, why CHIP binds these E2 enzymes rather than others, and whether CHIP interacts preferentially with UbcH5 or Ubc13-Uev1a, which form different types of polyubiquitin chains.  相似文献   

11.
In a previous study we found that sumoylation of the DNA-binding protein heat shock factor 2 (HSF2) is up-regulated during mitosis, but the mechanism that mediates this regulation was unknown. Here we show that HSF2 interacts with the polycomb protein MEL-18, that this interaction decreases during mitosis, and that overexpression and RNA interference-mediated reduction of MEL-18 result in decreased and increased HSF2 sumoylation, respectively. Other results suggest that MEL-18 may also function to inhibit the sumoylation of other cellular proteins. The results also show that MEL-18 is able to interact with the small ubiquitin-like modifier (SUMO) ubiquitin carrier protein (E2) enzyme UBC9 and that MEL-18 inhibits the ability of UBC9 to transfer the SUMO protein to target proteins. Together, the results in this work suggest a mechanism in which MEL-18 bound to HSF2 inhibits its sumoylation by binding to and inhibiting the activity of UBC9 enzymes in the vicinity of HSF2. These results provide an explanation for how mitotic HSF2 sumoylation is regulated and suggest that MEL-18, in contrast to the sumoylation-stimulating activities of the polycomb protein PC2, actually functions like an anti-SUMO ubiquitin-protein isopeptide ligase (E3), interacting both with HSF2 and the SUMO E2 UBC9 but acting to inhibit UBC9 activity to decrease sumoylation of a target protein, in this case that of HSF2.  相似文献   

12.
Proper folding of proteins (either newly synthesized or damaged in response to a stressful event) occurs in a highly regulated fashion. Cytosolic chaperones such as Hsc/Hsp70 are assisted by cofactors that modulate the folding machinery in a positive or negative manner. CHIP (carboxyl terminus of Hsc70-interacting protein) is such a cofactor that interacts with Hsc70 and, in general, attenuates its most well characterized functions. In addition, CHIP accelerates ubiquitin-dependent degradation of chaperone substrates. Using an in vitro ubiquitylation assay with recombinant proteins, we demonstrate that CHIP possesses intrinsic E3 ubiquitin ligase activity and promotes ubiquitylation. This activity is dependent on the carboxyl-terminal U-box. CHIP interacts functionally and physically with the stress-responsive ubiquitin-conjugating enzyme family UBCH5. Surprisingly, a major target of the ubiquitin ligase activity of CHIP is Hsc70 itself. CHIP ubiquitylates Hsc70, primarily with short, noncanonical multiubiquitin chains but has no appreciable effect on steady-state levels or half-life of this protein. This effect may have heretofore unanticipated consequences with regard to the chaperoning activities of Hsc70 or its ability to deliver substrates to the proteasome. These studies demonstrate that CHIP is a bona fide ubiquitin ligase and indicate that U-box-containing proteins may comprise a new family of E3s.  相似文献   

13.
During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone, which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone-dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domain-containing protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.  相似文献   

14.
The activity of the ubiquitin-dependent proteolytic system in differentiated tissues under basal conditions remains poorly explored. We measured rates of ubiquitination in rat tissue extracts. Accumulation of ubiquitinated proteins increased in the presence of ubiquitin aldehyde, indicating that deubiquitinating enzymes can regulate ubiquitination. Rates of ubiquitination varied fourfold, with the highest rate in the testis. We tested whether ubiquitin-activating enzyme (E1) or ubiquitin-conjugating enzymes (E2s) could be limiting for conjugation. Immunodepletion of the E2s UBC2 or UBC4 lowered rates of conjugation similarly. Supplementation of extracts with excess UBC2 or UBC4, but not E1, stimulated conjugation. However, UBC2-stimulated rates of ubiquitination still differed among tissues, indicating that tissue differences in E3s or substrate availability may also be rate controlling. UBC2 and UBC4 stimulated conjugation half-maximally at concentrations of 10-50 and 28-44 nM, respectively. Endogenous tissue levels of UBC2, but not UBC4, appeared saturating for conjugation, suggesting that in vivo modulation of UBC4 levels can likely control ubiquitin conjugation. Thus the pool of ubiquitin conjugates and therefore the rate of degradation of proteins by this system may be controlled by E2s, E3s, and isopeptidases. The regulation of the ubiquitin pathway appears complex, but precise.  相似文献   

15.
Sgt1 is an adaptor protein implicated in a variety of processes, including formation of the kinetochore complex in yeast, and regulation of innate immunity systems in plants and animals. Sgt1 has been found to associate with SCF E3 ubiquitin ligases, the CBF3 kinetochore complex, plant R proteins and related animal Nod-like receptors, and with the Hsp90 molecular chaperone. We have determined the crystal structure of the core Hsp90–Sgt1 complex, revealing a distinct site of interaction on the Hsp90 N-terminal domain. Using the structure, we developed mutations in Sgt1 interfacial residues, which specifically abrogate interaction with Hsp90, and disrupt Sgt1-dependent functions in vivo, in plants and yeast. We show that Sgt1 bridges the Hsp90 molecular chaperone system to the substrate-specific arm of SCF ubiquitin ligase complexes, suggesting a role in SCF assembly and regulation, and providing multiple complementary routes for ubiquitination of Hsp90 client proteins.  相似文献   

16.
The E2 ubiquitin-conjugating enzyme UBC13 plays pivotal roles in diverse biological processes. Recent studies have elucidated that UBC13, in concert with the E3 ubiquitin ligase RNF8, propagates the DNA damage signal via a ubiquitylation-dependent signaling pathway. However, mechanistically how UBC13 mediates its role in promoting checkpoint protein assembly and its genetic requirement for E2 variants remain elusive. Here we provide evidence to support the idea that the E3 ubiquitin ligase complex RNF8-UBC13 functions independently of E2 variants and is sufficient in facilitating ubiquitin conjugations and accumulation of DNA damage mediator 53BP1 at DNA breaks. The RNF8 RING domain serves as the molecular platform to anchor UBC13 at the damaged chromatin, where localized ubiquitylation events allow sustained accumulation of checkpoint proteins. Intriguingly, we found that only a group of RING domains derived from E3 ubiquitin ligases, which have been shown to interact with UBC13, enabled UBC13-mediated FK2 and 53BP1 focus formation at DNA breaks. We propose that the RNF8 RING domain selects and loads a subset of UBC13 molecules, distinct from those that exist as heterodimers, onto sites of double-strand breaks, which facilitates the amplification of DNA damage signals.  相似文献   

17.
Members of the hect domain protein family are characterized by sequence similarity of their C-terminal regions to the C terminus of E6-AP, an E3 ubiquitin-protein ligase. An essential intermediate step in E6-AP-dependent ubiquitination is the formation of a thioester complex between E6-AP and ubiquitin in the presence of distinct E2 ubiquitin-conjugating enzymes including human UbcH5, a member of the UBC4/UBC5 subfamily of E2s. Similarly, several hect domain proteins, including Saccharomyces cerevisiae RSP5, form ubiquitin thioester complexes, indicating that hect domain proteins in general have E3 activity. We show here, by the use of chimeric E2s generated between UbcH5 and other E2s, that a region of UbcH5 encompassing the catalytic site cysteine residue is critical for its ability to interact with E6-AP and RSP5. Of particular importance is a phenylalanine residue at position 62 of UbcH5 that is conserved among the members of the UBC4/UBC5 subfamily but is not present in any of the other known E2s, whereas the N-terminal 60 amino acids do not contribute significantly to the specificity of these interactions. The conservation of this phenylalanine residue throughout evolution underlines the importance of the ability to interact with hect domain proteins for the cellular function of UBC4/UBC5 subfamily members.  相似文献   

18.
CHIP is a ubiquitin ligase implicated in the degradation of misfolded proteins. In the November 23 issue of Molecular Cell, identified CHIP as a protein that interacts with the ubiquitin E2 complex Ubc13-Uev1A, which catalyzes the synthesis of Lys-63-linked polyubiquitin chains. Although the ubiquitin ligase activity of CHIP requires its dimerization through the U box domain, the crystal structure of the CHIP-E2 complex reveals that the protomers in the CHIP homodimer adopt distinct conformations such that only one U box of CHIP interacts with Ubc13.  相似文献   

19.
Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B′β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca2+/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B′β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B′β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B′β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B′β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B′β. Explaining PP2A subunit selectivity, the divergent N terminus of B′β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B′β heterotrimer, it only degrades B′β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events.  相似文献   

20.
The involvement of red blood cell spectrin in the ubiquitination process was studied. Spectrin was found to form two ubiquitin-associated derivatives, a DTT-sensitive ubiquitin adduct and a DTT-insensitive conjugate, characteristic intermediate and final products of the ubiquitination reaction cascade. In addition to spectrin and ubiquitin, ubiquitin-activating enzyme (E1) and ATP were necessary and sufficient to form both the spectrin-ubiquitin adduct and conjugate. No exogenous ubiquitin-conjugating (E2) or ligase (E3) activities were required, suggesting that erythrocyte spectrin is an E2 ubiquitin-conjugating enzyme able to target itself. Both ubiquitin adduct and conjugate were linked to the alpha subunit of spectrin, suggesting that the ubiquitin-conjugating (UBC) domain and its target regions reside on the same subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号