首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression and localization of Tmie in adult rat cochlea   总被引:2,自引:1,他引:1  
Loss-of function mutations in transmembrane inner ear expressed (Tmie/TMIE) gene have been shown to cause deafness in mice and humans (DFNB6). However, the functional roles of TMIE in the cochlea remain unclear. A primary step toward the understanding of the role of TMIE in hearing and its dysfunction is the documentation of its cellular and sub-cellular location within the cochlea, the auditory organ. In this study, we located and determined the cellular expression of Tmie within the rat cochlea using a polyclonal anti-Tmie antibody. The anti-Tmie antibody identified a specific band of 17 kDa in a variety of rat tissues by using Western blot analyses. The expression products of Tmie were also detected in the spiral limbus, spiral ligament, organ of Corti, and stria vascularis by immunohistochemistry analysis and RT-PCR. Our results point out the presence and localization of Tmie products in the cochlea of rat. Knowledge of spatial distribution of Tmie will provide important insight into the mechanisms that lead to deafness due to mutations in the TMIE gene.  相似文献   

2.

Background  

Despite current knowledge of mutations in 45 genes that can cause nonsyndromic sensorineural hearing loss (SNHL), no unified clinical test has been developed that can comprehensively detect mutations in multiple genes. We therefore designed Affymetrix resequencing microarrays capable of resequencing 13 genes mutated in SNHL (GJB2, GJB6, CDH23, KCNE1, KCNQ1, MYO7A, OTOF, PDS, MYO6, SLC26A5, TMIE, TMPRSS3, USH1C). We present results from hearing loss arrays developed in two different research facilities and highlight some of the approaches we adopted to enhance the applicability of resequencing arrays in a clinical setting.  相似文献   

3.
Mutations in connexin 26 are responsible for approximately 20% of genetic hearing loss and 10% of all childhood hearing loss. However, only about 75% of the mutations predicted to be in Cx26 are actually observed. While this may be due to mutations in noncoding regulatory regions, an alternative hypothesis is that some cases may be due to mutations in another gene immediately adjacent to Cx26. Another gap junction gene, connexin 30 (HGMW-approved symbol GJB6), is found to lie on the same PAC clone that hybridizes to chromosome 13q12. Human connexin 26 and connexin 30 are expressed in the same cells of the cochlea. Cx26 and Cx30 share 77% identity in amino acid sequence but Cx30 has an additional 37 amino acids at its C-terminus. These considerations led us to hypothesize that mutations in Cx30 might also be responsible for hearing loss. Eight-eight recessive nonsyndromic hearing loss families from both American and Japanese populations were screened for mutations. In addition, 23 dominant hearing loss families and 6 singleton families presumed to be recessive were tested. No significant mutation has been found in the dominant or recessive families.  相似文献   

4.
A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G-->C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium.  相似文献   

5.
napts is a recessive mutation that affects the level of sodium channel activity and, at high temperature, causes paralysis associated with a loss of action potentials. We show, by genetic complementation tests, germline transformation, and analysis of mutations, that napts is a gain-of-function mutation of mle, a gene required for X chromosome dosage compensation and male viability. Molecular analyses of nap and mle mutations indicate that mle+, nap+, and napts activities are encoded by the same open reading frame and suggest that napts is due to a single amino acid substitution. Although napts is known to act via para+, an X-linked sodium channel structural gene, its effect is not due to a simple defect in para+ dosage compensation.  相似文献   

6.
Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3' end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product.  相似文献   

7.
Recently the second gene for autosomal dominant polycystic kidney disease (ADPKD), located on chromosome 4q21-q22, has been cloned and characterized. The gene encodes an integral membrane protein, polycystin-2, that shows amino acid similarity to the PKD1 gene product and to the family of voltage-activated calcium (and sodium) channels. We have systematically screened the gene for mutations by single-strand conformation-polymorphism analysis in 35 families with the second type of ADPKD and have identified 20 mutations. So far, most mutations found seem to be unique and occur throughout the gene, without any evidence of clustering. In addition to small deletions, insertions, and substitutions leading to premature translation stops, one amino acid substitution and five possible splice-site mutations have been found. These findings suggest that the first step toward cyst formation in PKD2 patients is the loss of one functional copy of polycystin-2.  相似文献   

8.
9.
The structural genes (melB) for the melibiose carrier of five mutants of Escherichia coli showing altered cation specificity for melibiose transport were cloned. The mutations were mapped in a 248-base-pair DNA fragment by a recombinational assay by using the mutants transformed with hybrid plasmids carrying various portions of the wild-type melB gene. The nucleotide sequences of the corresponding DNA fragments derived from mutated melB genes were determined, and the amino acid sequences of the carrier were deduced. Proline 122 was replaced with serine in the melibiose carrier of all five mutants (which were isolated independently). We conclude that this amino acid replacement caused the alteration in cation specificity (loss of coupling to H+) of the melibiose carrier.  相似文献   

10.
G B Cox  D Webb    H Rosenberg 《Journal of bacteriology》1989,171(3):1531-1534
Three mutant alleles of the pstC gene and one mutant allele of the pstB gene were produced by site-directed mutagenesis. The pstC gene encodes an integral membrane protein of the phosphate-specific transport (Pst) system of Escherichia coli. The amino acid substitutions resulting from the pstC gene mutations, Arg-237----Gln, Glu-240----Gln, or a combination of both, caused the loss of phosphate transport through the Pst system, but the alkaline phosphatase activity remained repressed. The pstB gene encodes a peripheral membrane protein of the Pst system which carries a putative nucleotide-binding site. The amino acid substitutions Gly-48----Ile and Lys-49----Gln, resulting from the pstB mutations, caused the loss of phosphate transport through the Pst system and the derepression of alkaline phosphatase activity. The residues Gly-48 and Lys-49 are key residues in the putative nucleotide-binding site.  相似文献   

11.
间隙连接蛋白β2(GJB2)基因突变与遗传性非综合征性耳聋密切相关,其广泛的突变类型及特异性的热点突变被认为是一种独特的致聋基因。本研究应用生物信息学方法对17个物种的GJB2蛋白进行了系统发育、保守性、跨膜区结构、三维结构和错义突变的分析,并结合已有报道的实验结果进行关联性分析。分析预测获得了166个固定的氨基酸位点、2个非保守区以及2个空间结构保守位点;关联性分析证实发生在保守位点的突变致病性高,非保守区突变的概率致病性小,跨膜区且改变氨基酸性质的突变,可能影响蛋白的空间结构而改变膜通道的通透性。本文为进一步研究GJB2基因突变与聋病的关联性及分子发病机制提供了理论依据,同时,这种研究思路对其它疾病的相关研究具有一定的借鉴价值。  相似文献   

12.
13.
Idiopathic Parkinson's disease (PD) is characterized by a systemic loss of activity of complex I (NADH:ubiquinone oxidoreductase), the target enzyme of the parkinsonism producing neurotoxin, MPTP. Cybrid experiments strongly suggest that the loss of complex I activity arises from mitochondrial DNA. We prospectively evaluated low frequency, amino acid changing, heteroplasmic mutations in a narrow region of ND5, a mitochondrial gene encoding a complex I subunit, in brain tissue from PD and controls. The presence or absence of amino acid changing mutations correctly classified 15 of 16 samples. Heteroplasmic mutations in a specific region of ND5 largely segregate PD from controls and may be of major pathogenic importance in idiopathic PD.  相似文献   

14.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development. The major features of the disease include midface hypoplasia, micrognathia, microtia, conductive hearing loss and cleft palate. Current procedures of surgical treatment of TCS are discussed and novel findings concerning the genetic background of TCS are described. The TCS locus has been mapped to chromosome 5q31.3-32. The TCOF1 gene contains 26 exons and encodes a 1411 amino acid protein named treacle. In the TCOF1 gene 51 mutations have been identified. Most of these mutations are insertions or deletions, which result in an introduction of a premature termination codon into the reading frame. Mutational spectra support the hypothesis that TCS results from haploinsufficiency of treacle.  相似文献   

15.
Mutator phenotypes of common polymorphisms and missense mutations in MSH2.   总被引:4,自引:0,他引:4  
Hereditary non-polyposis colorectal cancer (HNPCC) is associated with germline mutations in the DNA mismatch repair gene hMSH2 [1], the human homologue of the Escherichia coli MutS gene. These are mostly nonsense, frameshift or deletion mutations that result in loss of intact protein and complete inactivation of DNA mismatch repair. However, cancer is also associated with hMSH2 missense mutations that are merely inferred to be deleterious because they result in non-conservative substitutions of amino acids that are highly conserved among MutS family proteins. Moreover, sequence polymorphisms exist in hMSH2 that also change conserved amino acids but whose functional consequences and relationship to cancer are uncertain. Here, we show that yeast strains harboring putative equivalents of three hMSH2 polymorphisms have elevated mutation rates. Mutator effects were also observed for yeast equivalents of hMSH2 missense mutations found in HNPCC families and in an early onset colon tumor. Several distinct phenotypes were observed, indicating that these missense mutations have differential effects on MSH2 function(s). The results suggest that cancer may be associated with even partial loss of hMSH2 function and they are consistent with the hypothesis that polymorphisms in hMSH2 might predispose humans to disease.  相似文献   

16.
We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.  相似文献   

17.
The Friend erythroleukemia virus complex contains no cell-derived oncogene. Transformation by this virus may therefore involve mutations affecting cellular gene expression. We provide evidence that inactivating mutations of the cellular p53 gene are a common feature in Friend virus-induced malignancy, consistent with an antioncogene role for p53 in this disease. We have shown that frequent rearrangements of the p53 gene cause loss of expression or synthesis of truncated proteins, whereas overexpression of p53 protein is seen in other Friend cell lines. We now demonstrate that p53 expression in the latter cells is also abnormal, as a result of missense mutations in regions encoding highly conserved amino acids. Three of these aberrant alleles obtained from cells from different mice were cloned and found to function as dominant oncogenes in gene transfer assays, supporting the view that certain naturally occurring missense mutations in p53 confer a dominant negative phenotype on the encoded protein.  相似文献   

18.
We have identified missense mutations at conserved amino acids in the PRPS1 gene on Xq22.3 in two families with a syndromic form of inherited peripheral neuropathy, one of Asian and one of European descent. The disease is inherited in an X-linked recessive manner, and the affected male patients invariably develop sensorineural hearing loss of prelingual type followed by gating disturbance and visual loss. The family of European descent was reported in 1967 as having Rosenberg-Chutorian syndrome, and recently a Korean family with the same symptom triad was identified with a novel disease locus CMTX5 on the chromosome band Xq21.32-q24. PRPS1 (phosphoribosyl pyrophosphate synthetase 1) is an isoform of the PRPS gene family and is ubiquitously expressed in human tissues, including cochlea. The enzyme mediates the biochemical step critical for purine metabolism and nucleotide biosynthesis. The mutations identified were E43D, in patients with Rosenberg-Chutorian syndrome, and M115T, in the Korean patients with CMTX5. We also showed decreased enzyme activity in patients with M115T. PRPS1 is the first CMT gene that encodes a metabolic enzyme, shedding a new light on the understanding of peripheral nerve-specific metabolism and also suggesting the potential of PRPS1 as a target for drugs in prevention and treatment of peripheral neuropathy by antimetabolite therapy.  相似文献   

19.
We report the detection of four new mutations in the ataxia telangiectasia gene (ATM). Reverse-transcribed RNA extracted from cultured cells was analysed for mutations by polymerase chain reaction amplifications and restriction endonuclease fingerprinting. Three deletions and a base substitution are described. The deletions reported here would result in severe disruptions of the ATM gene product by leading either to a protein truncation (a 4-bp deletion) or the loss of stretches of 53 and 58 amino acids (a 159-bp deletion and a 174-bp deletion, respectively); whereas the base substitution would lead to an amino acid change from a highly conserved glycine to an arginine residue. Received: 15 April 1996 / Revised: 24 April 1996  相似文献   

20.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases caused by progressive degeneration of the photoreceptor cells. Using autozygosity mapping, we identified two families, each with three affected siblings sharing large overlapping homozygous regions that harbored the IMPG2 gene on chromosome 3. Sequence analysis of IMPG2 in the two index cases revealed homozygous mutations cosegregating with the disease in the respective families: three affected siblings of Iraqi Jewish ancestry displayed a nonsense mutation, and a Dutch family displayed a 1.8 kb genomic deletion that removes exon 9 and results in the absence of seven amino acids in a conserved SEA domain of the IMPG2 protein. Transient transfection of COS-1 cells showed that a construct expressing the wild-type SEA domain is properly targeted to the plasma membrane, whereas the mutant lacking the seven amino acids appears to be retained in the endoplasmic reticulum. Mutation analysis in ten additional index cases that were of Dutch, Israeli, Italian, and Pakistani origin and had homozygous regions encompassing IMPG2 revealed five additional mutations; four nonsense mutations and one missense mutation affecting a highly conserved phenylalanine residue. Most patients with IMPG2 mutations showed an early-onset form of RP with progressive visual-field loss and deterioration of visual acuity. The patient with the missense mutation, however, was diagnosed with maculopathy. The IMPG2 gene encodes the interphotoreceptor matrix proteoglycan IMPG2, which is a constituent of the interphotoreceptor matrix. Our data therefore show that mutations in a structural component of the interphotoreceptor matrix can cause arRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号