首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Waste high-density polyethylene was converted into different hydrocarbon fractions by thermal and thermo-catalytic batch cracking. For the catalytic degradation of waste plastics three different catalysts (equilibrium FCC, HZSM-5 and clinoptilolite) were used. Catalysts differ basically in their costs and activity due to the differences of micro- and macroporous surface areas and furthermore the Si/Al ratio and acidities are also different. Mild pyrolysis was used at 430 °C and the reaction time was 45 min in each case. The composition of products was defined by gas chromatography, Fourier transform infrared spectroscopy, size exclusion chromatography, energy-dispersive X-ray fluorescence spectroscopy and other standardized methods. The effects of catalysts on the properties of degradation products were investigated. Both FCC and clinoptilolite catalysts had considerably catalytic activity to produce light hydrocarbon liquids, while HZSM-5 catalyst produced the highest amount of gaseous products. In case of liquids, carbon numbers were distributed within the C5–C23 range depending on the cracking parameters. Decomposition of the carbon chain could be followed by GC and both by FTIR and SEC techniques in case of volatile fractions and residues. Catalysts increased yields of valuable volatile fractions and moreover catalysts caused both carbon chain isomerization and switching of the position of double bonds.  相似文献   

2.
In this work, catalytic cracking of biomass waste oil fractions separated from food waste leachate was performed using microporous catalysts, such as HY, HZSM-5 and mesoporous Al-MCM-48. The experiments were carried out using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to allow the direct analysis of the pyrolytic products. Most acidic components, especially oleic acid, contained in the food waste oil fractions were converted to valuable products, such as oxygenates, hydrocarbons and aromatics. High yields of hydrocarbons within the gasoline-range were obtained when microporous catalysts were used; whereas, the use of Al-MCM-48, which exhibits relatively weak acidity, resulted in high yields of oxygenated and diesel-range hydrocarbons. The HZSM-5 catalyst produced a higher amount of valuable mono aromatics due to its strong acidity and shape selectivity. Especially, the addition of gallium (Ga) to HZSM-5 significantly increased the aromatics content.  相似文献   

3.
Li W  Pan C  Sheng L  Liu Z  Chen P  Lou H  Zheng X 《Bioresource technology》2011,102(19):9223-9228
In this work, the upgrading reactions of high-boiling fraction (HBF) of bio-oil were carried out over a series of supported mono- and bi-metallic catalysts under the supercritical methanol condition. During these reactions, esterification and cracking (alcoholysis and hydrocracking) were the two dominant processes. PtNi/MgO exhibited good performance, and gave a high yield (72.4 wt.%) of refined oil. The acid-base properties of the supports have an important effect on the coke deposition on the catalyst surface. The acidic catalysts gave the somewhat lower product yields, but tended to inhibit coking reaction. This would improve the life of the catalysts in the practical applications. The refined oil is believed to be a potential substitute or partial substitute for the fossil transportation fuel.  相似文献   

4.
Synthesis and catalyst performance of 2,3‐ (types B and C ) and 2,8‐disubstituted (type D ) thiourea bifunctional organocatalysts was attempted. The synthesis of catalyst of type B has, so far, not been realized, while catalysts of type C , i.e., the 2,3‐exo‐ and the 2‐endo‐3‐exo‐thiourea catalysts, were prepared in six steps starting from (+)‐camphor. The catalysts of type D were prepared from (+)‐camphor in eight steps. All the potential catalysts as well as most of the intermediate products were carefully structurally characterized. The thiourea bifunctional organocatalysts were tested in a model reaction of Michael addition of dimethyl malonate to trans‐β‐nitrostyrene. Chirality 27:39–52, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Rapeseed oil methyl esters preparation using heterogeneous catalysts   总被引:56,自引:0,他引:56  
The classical method of fatty acids methyl esters (FAME) production is based on triglyceride transesterification to methyl esters. Sodium hydroxide dissolved in methanol is used as a catalyst. The purpose of this work was to examine a heterogeneous catalyst, in particular calcium compounds, to produce methyl esters of rapeseed oil. This research showed that the transesterification of rapeseed oil by methyl alcohol can be catalysed effectively by basic alkaline-earth metal compounds: calcium oxide, calcium methoxide and barium hydroxide. Calcium catalysts, due to their weak solubility in the reaction medium, are less active than sodium hydroxide. However, calcium catalysts are cheaper and lead to decreases in the number of technological stages and the amount of unwanted waste products. It was found that the transesterification reaction rate can be enhanced by ultrasound as well as by introducing an appropriate reagent into a reactor to promote methanol solubility in the rapeseed oil. Tetrahydrofuran was used as additive to accelerate the transesterification process.  相似文献   

6.
Catalytic pyrolysis of tobacco rob: kinetic study and fuel gas produced   总被引:1,自引:0,他引:1  
Yang Y  Li T  Jin S  Lin Y  Yang H 《Bioresource technology》2011,102(23):11027-11033
The pyrolysis kinetics of tobacco rob (TR) was investigated using thermogravimetric analysis (TGA) under inert atmosphere, adding chemicals (dolomite and NiO) as catalysts by catalytic-mixing method. The TGA results showed that mass loss and mass loss rates were affected by catalysts. The conversion rates increased while the activation energy decreased. Moreover, the thermal decomposition behaviors of TR were studied in the fixed-bed reactor using dolomite and NiO/γ-Al2O3 as catalysts by catalyst-bed method. A series of experiments had been performed to explore the effects of catalysts, and reaction temperature on the composition and yield of fuel gas. The experiments demonstrated that the catalysts had a high activity of cracking tar and hydrocarbons, as well as yielding a high fuel gas production. For both methods, dolomite and NiO revealed better catalytic performance as a view of enhancing conversion rates and increasing product gas yield.  相似文献   

7.
The low efficiency of the electrocatalytic oxidation of water to O2 (oxygen evolution reaction‐OER) is considered as one of the major roadblocks for the storage of electricity from renewable sources in form of molecular fuels like H2 or hydrocarbons. Especially in acidic environments, compatible with the powerful proton exchange membrane (PEM), an earth‐abundant OER catalyst that combines high activity and high stability is still unknown. Current PEM‐compatible OER catalysts still rely mostly on Ir and/or Ru as active components, which are both very scarce elements of the platinum group. Hence, the Ir and/or Ru amount in OER catalysts has to be strictly minimized. Unfortunately, the OER mechanism, which is the most powerful tool for OER catalyst optimization, still remains unclear. In this review, we first summarize the current state of our understanding of the OER mechanism on PEM‐compatible heterogeneous electrocatalysts, before we compare and contrast that to the OER mechanism on homogenous catalysts. Thereafter, an overview over monometallic OER catalysts is provided to obtain insights into structure‐function relations followed by a review of current material optimization concepts and support materials. Moreover, missing links required to complete the mechanistic picture as well as the most promising material optimization concepts are pointed out.  相似文献   

8.
The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.  相似文献   

9.
Chen L  Cheng F  Jia L  Zhang A  Wu J  Tang N 《Chirality》2011,23(1):69-75
Two new chiral dinuclear Mn(III)-Salen complexes with inherent phase-transfer capability have been synthesized, which serve as catalysts in the asymmetric epoxidation of nonfunctionalized alkenes. Experimental results show these complexes are effective catalysts for the asymmetric epoxidation of some cyclic alkenes and the catalysts have certain inherent phase-transfer capability during the epoxidation because of their weak water solubility. In general, good enantioselectivity and acceptable yields were achieved when NaClO was used as oxidant under three different reaction systems. Among these alkenes, the catalyst 6a gave the highest ee (94%) for 6-chloro-2,2-dimethylchromene in the presence of ionic liquid 2. Additionally, the recovery and recycling of one dimeric Mn(III)-Salen complex were tested to investigate atom efficiency of the catalyst in different reaction systems on the alkenes epoxidations. The catalyst 6a could be recovered and recycled for six times without losing activity and selectivity.  相似文献   

10.
A polyallylamine carrying long hydrophobic dodecyl groups and adenine residues as side chains (PALAD C12) may be able to catalyze the hydrolysis ofN-carbobenzoxy-l-alaninep-nitrophenyl ester (N-Cbz-Ala) as well asp-nitrophenyl acetate (pNPA). The progress curve of hydrolysis of the former displays a long lag and apparently no steady state. After this transient the rate falls off due to the accumulation of the products. Conversely, the hydrolysis ofp-nitrophenyl acetate displays classical burst kinetics followed by a slow decline of the reaction rate. Theoretical considerations show that a steady state may be expected to occur only if the concentration of the free catalyst is very small during the reaction. This condition is sufficient to allow the rate of disappearance of the substrate to be equal to the rate of appearance of the products, which is precisely a condition for the existence of a steady state. If the catalyst is poorly active and has a loose affinity for its substrate and product, the measurement of a significant reaction rate will require a much larger concentration of the catalyst. Therefore, under these conditions, one cannot expect a steady state to occur. The mathematical expression of the error made in the steady-state assumption has been derived. This error increases with the catalyst concentration and decreases if the affinity of the substrate for the catalyst is high. Therefore the lack of steady state is associated with the affinity (or the dissociation) of the substrate and the product for the catalyst. When this affinity is low, the free concentration of the catalyst during the reaction is high and one cannot expect a steady state to occur. This is precisely what takes place with N-Cbz-Ala. A mathematical expression of the rate of hydrolysis of N-Cbz-Ala and of any reactant that displays this type of kinetics may be derived at the end of the transient when the rate is close to its maximum value. Under these conditions the rate cannot follow classical Michaelis-Menten kinetics and displays positive cooperativity. It may therefore be speculated that primordial template-like catalysts that were displaying a poor affinity for their substrates and products were already exhibiting apparent positive cooperativity in the kinetic reactions they were able to catalyze. Correspondence to: J. Ricard  相似文献   

11.
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER.  相似文献   

12.
In this work, the copolymerization of ethylene and methyl acrylate (MA) as catalyzed by a new Ni-based PymNox organometallic compound was studied computationally. We recently tested the behavior of this type of catalyst in ethylene homopolymerization. Experimental results show that the unsubstituted catalyst Ni2 (aldimino PymNox catalyst) is unable to incorporate the MA monomer, whereas methyl-substituted Ni1 (acetaldimino PymNox catalyst) is able to achieve copolymerization. The reactivities of both catalysts were examined using density functional theory (DFT) models. Based on energy profiles calculated at the BP86 level, a Curtin–Hammett mechanism was proposed to explain the different reactivities of the catalysts in ethylene/MA copolymerization. Our results indicate that the methyl substituent Ni1 introduces additional steric hindrance that results in a catalyst conformation that is better suited to polar monomer incorporation. This model provides insights into the design of new catalysts to produce polar functionalized copolymers based on ethylene.  相似文献   

13.
The Co(III) complex of 1,4,7,10-tetraazacyclododecane has been employed as the catalytic center of target-selective peptide-cleaving catalysts in previous studies. As new chelating ligands for the Co(III) ion in the peptide-cleaving catalysts, 1-oxo-4,7,10-triazacyclodedecane, 1-aryl-1,4,7,10-tetraazacyclodecane, and 7-aryl-1-oxo-4,7,10-triazacyclodecane were examined in the present study. A chemical library comprising 612 derivatives of the Co(III) complex of the new chelating ligands was constructed. The catalyst candidates were tested for their activity to cleave the soluble oligomers of amyloidogenic peptides amyloid β-42 and human islet amyloid polypeptide (h-IAPP), which are believed to be the pathogenic species for Alzheimer’s disease and type 2 diabetes mellitus, respectively. One derivative of the Co(III) complex of 1-aryl-1,4,7,10-tetraazacyclodecane was found to cleave the oligomers of h-IAPP. Cleavage products were identified and cleavage yields were measured at various catalyst concentrations for the action of the new catalyst. The present results reveal that effective catalytic drugs for amyloidoses may be obtained by using Co(III) complexes of various chelating ligands.  相似文献   

14.
The commercial application of lipases as biocatalysts for organic synthesis requires simple but efficient methods to immobilize the enzyme, yielding highly stable and active biocatalysts which are easy to recover. In this study, we present a novel method to achieve lipase immobilization by entrapment in chemically inert hydrophobic silica gels which are prepared by hydrolysis of alkyl-substituted silanes in the presence of the enzyme. A typical immobilization procedure uses: an aqueous solution of lipase; sodium fluoride as a catalyst; and additives like polyvinyl alcohol or proteins and alkoxysilane derivatives like RSi-(OMe)(3) with R = alkyl, aryl, or alkoxy as gel precursors. The effect of various immobilization parameters like stoichiometric ratio of water, silane, type and amount of additive, type and amount of catalyst, and type of silane has been carefully studied. The new method is applicable for a wide variety of lipases, yielding immobilized lipases with esterification activities enhanced by a factor of up to 88, compared to the commercial enzyme powders under identical conditions. Studies on the stability of sol-gel immobilized lipases under reaction conditions or storage (dry, in aqueous or organic medium) revealed an excellent retention of enzymatic activity. The possible reasons for the increased enzyme activities are discussed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Summary This study investigates the possibility of reusing metal-contaminated equilibrium fluid catalytic cracking (FCC) catalyst after bioleaching. Leaching with Aspergillus niger culture was found to be more effective in the mobilization of nickel from the catalyst particles compared to chemical leaching with citric acid. Bioleaching achieved 32% nickel removal whereas chemical leaching achieved only 21% nickel removal from catalyst particles. The enhanced nickel removal from the catalysts in the presence of A. niger culture was attributed to the biosorption ability of the fungal mycelium and to the higher local concentration of citric acid on the catalyst surface. It was found that 9% of solubilized nickel in the liquid medium was biosorbed to fungal biomass. After nickel leaching with A. niger culture, the hydrogen-to-methane molar ratio and coke yield, which are the measures of dehydrogenation reactions catalysed by nickel during cracking reactions, decreased significantly.  相似文献   

16.
Roca M  Liu H  Messer B  Warshel A 《Biochemistry》2007,46(51):15076-15088
The possible relationship between the thermal stability and the catalytic power of enzymes is of great current interest. In particular, it has been suggested that thermophilic or hyperthermophilic (Tm) enzymes have lower catalytic power at a given temperature than the corresponding mesophilic (Ms) enzymes, because the thermophilic enzymes are less flexible (assuming that flexibility and catalysis are directly correlated). These suggestions presume that the reduced dynamics of the thermophilic enzymes is the reason for their reduced catalytic power. The present paper takes the specific case of dihydrofolate reductase (DHFR) and explores the validity of the above argument by simulation approaches. It is found that the Tm enzymes have restricted motions in the direction of the folding coordinate, but this is not relevant to the chemical process, since the motions along the reaction coordinate are perpendicular to the folding motions. Moreover, it is shown that the rate of the chemical reaction is determined by the activation barrier and the corresponding reorganization energy, rather than by dynamics or flexibility in the ground state. In fact, as far as flexibility is concerned, we conclude that the displacement along the reaction coordinate is larger in the Tm enzyme than in the Ms enzyme and that the general trend in enzyme catalysis is that the best catalyst involves less motion during the reaction than the less optimal catalyst. The relationship between thermal stability and catalysis appears to reflect the fact that to obtain small electrostatic reorganization energy it is necessary to invest some folding energy in the overall preorganization process. Thus, the optimized catalysts are less stable. This trend is clearly observed in the DHFR case.  相似文献   

17.
Combinations of substrate-binding sites and catalytic groups constitute various kinds of enzyme-like catalysts. The design of such catalysts can be evaluated by the enhancement of the overall catalytic activity by combining these parts into one catalyst. For a catalyst having one substrate-binding site and one catalytic group, an equation was obtained which shows the relationship between the rate-acceleration due to the combination, the affinity of the site (1/Kd), intrinsic effective concentration (kin/kex) and substrate concentration ([S]). The intrinsic effective concentration is the ratio of the first-order rate constant (kin) of the intramolecular reaction between the catalytic group and the bound substrate and the second-order rate constant (kex) of the intermolecular reaction between the catalytic group and the free substrate; the value depends on the method of linking the catalytic group and the binding site. This equation provides the following principles for designing catalysts of this type with a considerable grade of rate-acceleration: [S] less than or equal to kin/kex and (1/10)[S] less than or equal to Kd less than or equal to kin/kex. To increase kin/kex, the structure of the binding site is required not to reduce the reactivity of the bound substrate, and the linker connecting the binding site and the catalytic group is required to be flexible and to have an appropriate length. A subunit structure is also found to be effective to improve the catalytic activity: the activity of an n-mer is at most n2 times as high as that of the monomer. As for the substrate-binding sites, the sites of natural enzymes and antibodies are good candidates because various kinds of binding sites with high affinity and specificity to the corresponding substrates are available. In addition, the equation relating the rate-acceleration with Kd, kin/kex, and [S] is used for explaining the catalytic efficiency of enzymes energetically. The principle for designing a multifunctional catalyst having several kinds of binding sites for its substrates and intermediates and several kinds of catalytic groups was then investigated. In this case, the diffusion of the intermediates strongly affects the activity of the multifunctional catalyst, and such a diffusion process was also analyzed. On the basis of these analyses, the following principles were obtained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Metal nanoparticle-chitosan (NPs-chitosan) bioconjugates were formed by exposure of chitosan to an aqueous solution of metal salts under thermal treatment. The metal nanoparticles that are formed strongly bound to chitosan, which encouraged us to investigate their catalytic performance. It was demonstrated that the metal NPs-chitosan bioconjugates functioned as effective catalysts for the reduction of 4-nitrophenol in the presence of NaBH4, which was monitored by means of spectrophotometry as a function of reaction time. The silver NPs-chitosan bioconjugates exhibited excellent catalytic activity and were reusable for up to seven cycles. In contrast, the gold NPs-chitosan catalyst displayed poor catalytic activity, even in the second cycle. A highlight of our approach is that chitosan simultaneously acts as an active support for the synthesis and assembly of nanoparticles, and the resultant bioconjugates bear the advantage of easy separation from the reaction medium.  相似文献   

19.
In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil-ethyl ester phase, thus accelerating the saponification reaction.It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.  相似文献   

20.
Iron and palladium binding an exopolysaccharide (EPS) were obtained and purified from cultures of bacterial cells of Klebsiella oxytoca BAS-10. The strain BAS-10 was able to grow under anaerobic conditions with Fe(III)-citrate as energy and carbon source, producing Fe(III)-EPS that was extracted and used as catalyst in the oxidation reaction of phenol with H(2)O(2). The same bacterial strain was cultivated anaerobically with Na-citrate and Pd(2)(NO)(3) was added during the exponential growth to afford a Pd-EPS, named Bio-Pd (A), that, after isolation and purification, was used as catalyst in the reductive dehalogenation of chlorobenzene as model reaction. For comparison other two palladium binding polysaccharides were prepared: (a) a second type Pd-EPS, named Bio-Pd (B), was obtained by an exchange reaction with Pd acetate starting from an iron-free EPS produced by strain BAS-10 growing on Na-citrate medium; (b) a third type of palladium, named Bio-Pd (C), bound to a different polysaccharide, was recovered after the same exchange reaction applied on glycolipid emulsan obtained from an aerobic culture of Acinetobacter venetianus RAG 1. The superiority of Bio-Pd (A), as catalyst, vs Bio-Pd (B) and (C) was demonstrated. This approach to use microorganisms to prepare metal bound polysaccharides is novel and permits to prepare metal species, sequestrated in aqueous phase that can be useful either as catalysts for synthetic applications or to support the microbial biotransformation of pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号