共查询到20条相似文献,搜索用时 15 毫秒
1.
Melina Reisenberg Praveen K. Singh Gareth Williams Patrick Doherty 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1607):3264-3275
The diacylglycerol lipases (DAGLs) hydrolyse diacylglycerol to generate 2-arachidonoylglycerol (2-AG), the most abundant ligand for the CB1 and CB2 cannabinoid receptors in the body. DAGL-dependent endocannabinoid signalling regulates axonal growth and guidance during development, and is required for the generation and migration of new neurons in the adult brain. At developed synapses, 2-AG released from postsynaptic terminals acts back on presynaptic CB1 receptors to inhibit the secretion of both excitatory and inhibitory neurotransmitters, with this DAGL-dependent synaptic plasticity operating throughout the nervous system. Importantly, the DAGLs have functions that do not involve cannabinoid receptors. For example, 2-AG is the precursor of arachidonic acid in a pathway that maintains the level of this essential lipid in the brain and other organs. This pathway also drives the cyclooxygenase-dependent generation of inflammatory prostaglandins in the brain, which has recently been implicated in the degeneration of dopaminergic neurons in Parkinson''s disease. Remarkably, we still know very little about the mechanisms that regulate DAGL activity—however, key insights can be gleaned by homology modelling against other α/β hydrolases and from a detailed examination of published proteomic studies and other databases. These identify a regulatory loop with a highly conserved signature motif, as well as phosphorylation and palmitoylation as post-translational mechanisms likely to regulate function. 相似文献
2.
Valenti M Cottone E Martinez R De Pedro N Rubio M Viveros MP Franzoni MF Delgado MJ Di Marzo V 《Journal of neurochemistry》2005,95(3):662-672
Cannabinoid receptors and the endocannabinoids anandamide and 2-arachidonoylglycerol have been suggested to regulate food intake in several animal phyla. Orthologs of the mammalian cannabinoid CB(1) and CB(2) receptors have been identified in fish. We investigated the presence of this endocannabinoid system in the brain of the goldfish Carassius auratus and its role in food consumption. CB(1)-like immunoreactivity was distributed throughout the goldfish brain. The prosencephalon showed strong CB(1)-like immunoreactivity in the telencephalon and the inferior lobes of the posterior hypothalamus. Endocannabinoids were detected in all brain regions of C. auratus and an anandamide-hydrolysing enzymatic activity with features similar to those of mammalian fatty acid amide hydrolase was found. Food deprivation for 24 h was accompanied by a significant increase of anandamide, but not 2-arachidonoylglycerol, levels only in the telencephalon. Anandamide caused a dose-dependent effect on food intake within 2 h of intraperitoneal administration to satiated fish and significantly enhanced or reduced food intake at low (1 pg/g body weight) or intermediate (10 pg/g) doses, respectively, the highest dose tested (100 pg/g) being inactive. We suggest that endocannabinoids might variously contribute to adaptive responses to food shortage in fish. 相似文献
3.
Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1R signaling and anxiety‐like behavior 下载免费PDF全文
Roberta Imperatore Giovanna Morello Livio Luongo Ulrike Taschler Rosaria Romano Danilo De Gregorio Carmela Belardo Sabatino Maione Vincenzo Di Marzo Luigia Cristino 《Journal of neurochemistry》2015,135(4):799-813
4.
Xin Xu Xiaoyan Yang Yan Xiong Juan Gu Changlong He Yida Hu Fei Xiao Guojun Chen Xuefeng Wang 《Journal of neurochemistry》2015,133(1):134-143
Mesial temporal lobe epilepsy (MTLE) is characterized by spontaneous recurrent complex partial seizures. Increased neurogenesis and neuronal plasticity have been reported in animal models of MTLE, but not in detail in human MTLE cases. Here, we showed that receptor for activated C kinase 1 (RACK1) was expressed in the hippocampus and temporal cortex of the MTLE human brain. Interestingly, most of the cells expressing RACK1 in the epileptic temporal cortices co‐expressed both polysialylated neural cell adhesion molecules, the migrating neuroblast marker, and the beta‐tubulin isotype III, an early neuronal marker, suggesting that these cells may be post‐mitotic neurons in the early phase of neuronal development. A subpopulation of RACK1‐positive cells also co‐express neuronal nuclei, a mature neuronal marker, suggesting that epilepsy may promote the generation of new neurons. Moreover, in the epileptic temporal cortices, the co‐expression of both axonal and dendritic markers in the majority of RACK1‐positive cells hints at enhanced neuronal plasticity. The expression of β‐tubulin II (TUBB2B) associated with neuronal migration and positioning, was decreased. This study is the first to successfully identify a single population of cells expressing RACK1 in the human temporal cortex and the brain of the animal model, which can be up‐regulated in epilepsy. Therefore, it is possible that these cells are functionally relevant to the pathophysiology of epilepsy.
5.
P. Monteleone M. Bifulco C. Di Filippo P. Gazzerro B. Canestrelli F. Monteleone M. C. Proto M. Di Genio C. Grimaldi M. Maj 《Genes, Brain & Behavior》2009,8(7):728-732
Endocannabinoids modulate eating behavior; hence, endocannabinoid genes may contribute to the biological vulnerability to eating disorders. The rs1049353 (1359 G/A) single nucleotide polymorphism (SNP) of the gene coding the endocannabinoid CB1 receptor ( CNR1 ) and the rs324420 (cDNA 385C to A) SNP of the gene coding fatty acid amide hydrolase (FAAH), the major degrading enzyme of endocannabinoids, have been suggested to have functional effects on mature proteins. Therefore, we explored the possibility that those SNPs were associated to anorexia nervosa and/or bulimia nervosa. The distributions of the CNR1 1359 G/A SNP and of the FAAH cDNA 385C to A SNP were investigated in 134 patients with anorexia nervosa, 180 patients with bulimia nervosa and 148 normal weight healthy controls. Additive effects of the two SNPs in the genetic susceptibility to anorexia nervosa and bulimia nervosa were also tested. As compared to healthy controls, anorexic and bulimic patients showed significantly higher frequencies of the AG genotype and the A allele of the CNR1 1359 G/A SNP. Similarly, the AC genotype and the A allele of the FAAH cDNA 385C to A SNP were significantly more frequent in anorexic and bulimic individuals. A synergistic effect of the two SNPs was evident in anorexia nervosa but not in bulimia nervosa. Present findings show for the first time that the CNR1 1359 G/A SNP and the FAAH cDNA 385C to A SNP are significantly associated to anorexia nervosa and bulimia nervosa, and demonstrate a synergistic effect of the two SNPs in anorexia nervosa. 相似文献
6.
Yuichi Takashi Shun Sawatsubashi Itsuro Endo Yukiyo Ohnishi Masahiro Abe Munehide Matsuhisa Daiji Kawanami Toshio Matsumoto Seiji Fukumoto 《Biochemistry and Biophysics Reports》2021
Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span. 相似文献
7.
A cannabinoid receptor orthologue (CiCBR) has been described in the sea squirt Ciona intestinalis. Here we report that CiCBR mRNA expression is highest in cerebral ganglion, branchial pharynx, heart and testis of C. intestinalis, and that this organism also contains cannabinoid receptor ligands and some of the enzymes for ligand biosynthesis and inactivation. Using liquid chromatography-mass spectrometry, the endocannabinoid anandamide was found in all tissues analysed (0.063-5.423 pmol/mg of lipid extract), with the highest concentrations being found in brain and heart. The endocannabinoid 2-arachidonoylglycerol (2-AG) was fivefold more abundant than anandamide, and was most abundant in stomach and intestine and least abundant in heart and ovaries (2.677-50.607 pmol/mg of lipid extract). Using phylogenomic analysis, we identified orthologues of several endocannabinoid synthesizing and degrading enzymes. In particular, we identified and partly sequenced a fatty acid amide hydrolase (FAAH) orthologue, showing 44% identity with human FAAH and containing nearly all the amino acids necessary for a functional FAAH enzyme. Ciona intestinalis also contained specific binding sites for cannabinoid receptor ligands, and an amidase enzyme with pH-dependency and subcellular/tissue distribution similar to mammalian FAAHs. Finally, a typical C. intestinalis behavioural response, siphon reopening after closure induced by mechanical stimulation, was inhibited by the cannabinoid receptor agonist HU-210, and this effect was significantly attenuated by mammalian cannabinoid receptor antagonists. 相似文献
8.
9.
Distinct in vivo roles of secreted APP ectodomain variants APPsα and APPsβ in regulation of spine density,synaptic plasticity,and cognition 下载免费PDF全文
Alex Winschel Tobias Abel Charlotte Bold Leonie R Salzburger Susanne Klein Kang Han Sascha W Weyer Ann‐Kristina Fritz Bodo Laube David P Wolfer Christian J Buchholz Martin Korte Ulrike C Müller 《The EMBO journal》2018,37(11)
Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsβ fragments, generated by non‐amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsβ in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsβ failed to show any detectable effects on synaptic plasticity and spine density. The C‐terminal 16 amino acids of APPsα (lacking in APPsβ) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7‐nAChRs. Further, APPsα showed high‐affinity, allosteric potentiation of heterologously expressed α7‐nAChRs in oocytes. Collectively, we identified α7‐nAChRs as a crucial physiological receptor specific for APPsα and show distinct in vivo roles for APPsα versus APPsβ. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsβ. 相似文献
10.
Adriano Mollica Sveva Pelliccia Valeria Famiglini Azzurra Stefanucci Giorgia Macedonio Annalisa Chiavaroli 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):444-451
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release. 相似文献
11.
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress‐ and anxiety‐related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age‐specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety. 相似文献
12.
Meccariello R Chianese R Cacciola G Cobellis G Pierantoni R Fasano S 《Molecular reproduction and development》2006,73(5):551-558
Endogenous cannabinoids and type-1 cannabinoid receptor (CB1) are widely produced and distributed in the central nervous system (CNS) and peripheral nerves in mammals. In addition, the detection of endocannabinoids and corresponding receptors in non nervous peripheral tissues indicates an involvement of the system in the control of a wide range of physiological activities, including reproduction. Recently, the existence of CB1 was also observed in lower vertebrates and in urochordate suggesting that the endocannabinoid system is phylogenetically conserved. Using RT-PCR, CB1 mRNA expression profiles were characterized in a wide range of tissues of the anuran amphibian, the frog, Rana esculenta. Besides a strong expression in the CNS, CB1 was also present in testis, kidney, liver, ovary, muscle, heart, spleen, and pituitary. The CB1 expression pattern has been characterized in both testis and CNS during the annual sexual cycle. In testis, CB1 is poorly expressed during the winter stasis of the spermatogenesis rising during the breeding season and resumption period. An expression profile mismatching to that observed in testis was detected in whole-brain preparations during the sexual cycle; in particular in the diencephalon, the encephalic area mainly involved in the control of reproductive functions. Furthermore, fluctuations inside isolated encephalic areas and spinal cord were observed all over the reproductive cycle. In conclusion, CB1 receptor is expressed in R. esculenta CNS and testis. As far as the gonad it concerns, our results suggest the involvement of the endocannabinoids in the control of reproductive function. 相似文献
13.
14.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):222-230
The CB1 receptor belongs to the G-protein-coupled receptor superfamily. CB1 antagonism has been considered as a new therapeutic target for the treatment of obesity. In this study, we report the synthesis and in vitro binding affinity assay of some 1,5-diarylpyrazole scaffold compounds. The binding results showed that some of the target compounds had an excellent potency toward the CB1 receptor with IC50 values lying at the nanomole level. 相似文献
15.
Hansen HH Azcoitia I Pons S Romero J García-Segura LM Ramos JA Hansen HS Fernández-Ruiz J 《Journal of neurochemistry》2002,82(1):154-158
The ability of cannabinoid CB(1) receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB(1) receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB(1) /CB(2) receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB(1) and SR144528 for CB(2) ) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB(1) receptor function. In contrast, blockade of CB(1), but not CB(2), receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest a critical involvement of CB(1) receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo. 相似文献
16.
Hatsumi Yoshiki Matomo Nishio Yuji Ikegaya Naoya Takahashi Norio Matsuki Yasuhisa Fujibayashi Yoshiharu Yonekura Toshihiko Momiyama Ikunobu Muramatsu 《Journal of neurochemistry》2013,126(3):360-371
Muscarinic acetylcholine receptors (mAChRs) are well known to transmit extracellular cholinergic signals into the cytoplasm from their position on the cell surface. However, we show here that M1‐mAChRs are also highly expressed on intracellular membranes in neurons of the telencephalon and activate signaling cascades distinct from those of cell surface receptors, contributing uniquely to synaptic plasticity. Radioligand‐binding experiments with cell‐permeable and ‐impermeable ligands and immunohistochemical observations revealed intracellular and surface distributions of M1‐mAChRs in the hippocampus and cortex of rats, mice, and humans, in contrast to the selective occurrence on the cell surface in other tissues. All intracellular muscarinic‐binding sites were abolished in M1‐mAChR‐gene‐knockout mice. Activation of cell surface M1‐mAChRs in rat hippocampal neurons evoked phosphatidylinositol hydrolysis and network oscillations at theta rhythm, and transiently enhanced long‐term potentiation. On the other hand, activation of intracellular M1‐mAChRs phosphorylated extracellular‐regulated kinase 1/2 and gradually enhanced long‐term potentiation. Our data thus demonstrate that M1‐mAChRs function at both surface and intracellular sites in telencephalon neurons including the hippocampus, suggesting a new mode of cholinergic transmission in the central nervous system. 相似文献
17.
18.
Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation 总被引:2,自引:0,他引:2
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation. 相似文献
19.
Andrew J. Irving Jenni Harvey 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1633)
The endocrine hormone leptin plays a key role in regulating food intake and body weight via its actions in the hypothalamus. However, leptin receptors are highly expressed in many extra-hypothalamic brain regions and evidence is growing that leptin influences many central processes including cognition. Indeed, recent studies indicate that leptin is a potential cognitive enhancer as it markedly facilitates the cellular events underlying hippocampal-dependent learning and memory, including effects on glutamate receptor trafficking, neuronal morphology and activity-dependent synaptic plasticity. However, the ability of leptin to regulate hippocampal synaptic function markedly declines with age and aberrant leptin function has been linked to neurodegenerative disorders such as Alzheimer''s disease (AD). Here, we review the evidence supporting a cognitive enhancing role for the hormone leptin and discuss the therapeutic potential of using leptin-based agents to treat AD. 相似文献