首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autism spectrum disorder (ASD) is a neurological disorder triggered by various factors through complex mechanisms. Research has been done to elucidate the potential etiologic mechanisms in ASD, but no single cause has been confirmed. The involvement of oxidative stress is correlated with ASD and possibly affects mitochondrial function. This study aimed to elucidate the link between mitochondrial dysregulation and idiopathic ASD by focusing on mitochondrial respiratory capacity and membrane potential. Our findings showed that mitochondrial function in the energy metabolism pathway was significantly dysregulated in a lymphoblastoid cell line (LCL) derived from an autistic child (ALCL). Respiratory capacities of oxidative phosphorylation (OXPHOS), electron transfer of the Complex I and Complex II linked pathways, membrane potential, and Complex IV activity of the ALCL were analyzed and compared with control cell lines derived from a developmentally normal non-autistic sibling (NALCL). All experiments were performed using high-resolution respirometry. Respiratory capacities of OXPHOS, electron transfer of the Complex I- and Complex II-linked pathways, and Complex IV activity of the ALCL were significantly higher compared to healthy controls. Mitochondrial membrane potential was also significantly higher, measured in the Complex II-linked pathway during LEAK respiration and OXPHOS. These results indicate the abnormalities in mitochondrial respiratory control linking mitochondrial function with autism. Correlating mitochondrial dysfunction and autism is important for a better understanding of ASD pathogenesis in order to produce effective interventions.  相似文献   

2.
We show that tetraphenylphosphonium inhibits oxidation of palmitoylcarnitine, pyruvate, malate, 2-oxoglutarate and glutamate in heart mitochondria in the range of concentration (1–5 µM) commonly used for the determination of mitochondrial membrane potential. The inhibition of 2-oxoglutarate (but not other substrate) oxidation by tetraphenylphosphonium is dependent on the concentration of 2-oxoglutarate and on extramitochondrial free calcium, and the kinetic plots are consistent with a mixed type of inhibition. Our results indicate that tetraphenylphosphonium interacts with enzymes, specifically involved in the oxidation of 2-oxoglutarate, most possibly, 2-oxoglutarate dehydrogenase.  相似文献   

3.
The kinetic properties of ATP hydrolysis and synthesis by FoF1-ATPase of heart mitochondria were evaluated during the acute phase of T. cruzi infection in rats. Mitochondria and submitochondrial particles were isolated 7 days (early stage) and 25 days (late stage) following infection of rats with 2 × 105 trypomastigote forms of the Y strain of T. cruzi. The kinetic properties for ATP hydrolysis were altered for the early but not the late stage, showing a changed pH profile, increased K0.5 values, and a decreased total Vmax. The Arrhenius' plot for membrane-associated enzyme showed a higher transition temperature with a lower value for the activation energy in body temperature. For the Triton X-100 - solubilized enzyme, the plot was similar to the control. A decrease in the efficiency of ADP phosphorylation by mitochondria, measured by the firefly-luciferase luminescence, was observed only during the late stage and appeared to be correlated with a decrease in the affinity of the FoF1-ATPase for ADP. It is proposed that in the early stage, during the acute phase of T. cruzi infection in rats, heart FoF1-ATPase undergoes a membrane-dependent conformational change in order to maintain the phosphorylation potential of mitochondria, which would compensate for the uncoupling of mitochondrial function. Also, during both the early and late stages, the enzyme seems to be under the regulation of the endogenous inhibitor protein for the preservation of cellular ATP levels.  相似文献   

4.
Mitochondria fulfill important functions in photosynthetic cells not only in darkness but also in light. Mitochondrial oxidative phosphorylation is probably the main mechanism to supply ATP for extrachloroplastic functions in both conditions. Furthermore, during photosynthesis mitochondrial electron transport is important for regulation of the redox balance in the cell. This makes mitochondrial function an integral part of a flexible metabolic system in the photosynthetic cell. This flexibility is probably very important in order to allow the metabolism to override disturbances caused by the changing environment which plants are adapted to.  相似文献   

5.
6.
The herbicides neburon and siduron are uncouplers of oxidative phosphorylation in potato tuber (Solanum tuberosum L. cv. Bintje) mitochondria. Their effect on the ion permeabilities of the mitochondrial membrane was investigated using the acid-base pulse technique, swelling experiments and integrity tests. Both herbicides permeabilize the membrane to H+ ions. They have no action on the permeabilities of K+ and Fe(CN)3?6. The swelling observed with Ca2+ was better interpreted as an effect on membrane structure than as a true swelling. Diuron, a parent compound that does not uncouple oxidative phosphorylation, does not act on Ca2+-induced apparent swelling.  相似文献   

7.
The present study investigated whether the cold‐sensitive character of soybean is reflected at the level of mitochondrial membranes. When exposed to an increase of temperature (from 25 to 35 °C), mitochondrial membranes were characterized by a higher phosphatidylcholine : phosphatidylethanolamine ratio and a lower content in 18 : 3 fatty acid. After a reduction of temperature (from 25 to 18 °C) the opposite changes were found. Lipid lateral diffusion and local microviscosity appeared to be comparable in mitochondria from plantlets grown at 25 or 35 °C when assayed at the respective growth temperatures. Some functional aspects (cytochrome c oxidase activity or membrane conductance) tended to this behaviour whereas others (respiration rate or maximum membrane potential) did not. On the other hand, membranes from plants grown at 18 °C were more rigid. Moreover, as illustrated by cytochrome c oxidase activity or respiration rate, functional measurements suggested that these membranes were less active at this temperature. Thus the dynamic characteristics and functional properties measured in mitochondrial membranes were in favour of an adaptive trend at 35 °C, but not at 18 °C despite changes in lipid composition, in accordance with the cold‐sensitive character of the plant.  相似文献   

8.
In both the growth plate and in marrow stromal cell cultures cell-mediated mineralization is preceded by characteristics of anaerobic and low efficiency energy metabolism. Reagents that increase mineralization like malonate and dexamethasone (DEX) also increase the mitochondrial membrane potential (MtMP) especially 1 week after DEX stimulation. Contrarily, levamisole, which decreases mineralization, also decreases MtMP. Modulation of MtMP and energy metabolism could be linked to regulation of mineralization by the uncoupling of oxidative phosphorylation. This uncoupling should be associated with thermogenesis in cells that induce mineralization. We examined whether cold temperature affects mineralization, and whether cellular thermogenesis takes place at cold temperature in parallel to changes in MtMP. Osteoprogenitor cells (OPC) induced, in DEX stimulated rat marrow stroma, higher mineralization at 33°C than at 37°C. Increased mineralization by cold temperature required long incubation since incubation in the cold during short intervals, 3–4 days, did not increase mineralization relative to (37°C) controls. Marrow stromal cells in the presence of valinomycin responded to incubation at 33°C by retaining all the vital dye after 4 h, unlike the cells at 37°C; however, after 24 h the level of dye retention at 33°C was the same as at 37°C. The delayed response of the temperature-dependent (> 37°C) K+ ionophor to incubation in the cold indicated that certain cells may respond to low temperature by local intracellular heating, and by heat conduction to the plasma membrane. DEX-stimulated stromal cells, unlike unstimulated cells, showed increased mitochondrial rhodamine 123 retention in the presence of valinomycin after 24 h in the cold, which corresponds to day 4 of OPC induction. This is consistent with the concept that valinomycin-induced cell damage is mediated by (cold-induced) local heating. The mechanism of this cell damage should selectively prefer non-thermogenic (rhodamine retaining) over thermogenic (rhodamine leaking) cells such as OPC. At cold temperature DEX-stimulated stromal cells showed the best anti-OPC selection under exposure to valinomycine between days 3–7, concurrent with the period of rhodamine leakage from the mitochondria. These results indicate that thermogenesis is enhanced during the period of low MtMP in mineralizing cells, and prolonged exposure to cold increases mineralization also due to induction of subtle thermogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Pre-synaptic nerve terminals (synaptosomes) require ATP for neurotransmitter exocytosis and recovery and for ionic homeostasis, and are consequently abundantly furnished with mitochondria. Pre-synaptic mitochondrial dysfunction is implicated in a variety of neurodegenerative disorders, although there is no precise definition of the term 'dysfunction'. In this study, we test the hypothesis that partial restriction of electron transport through Complexes I and II in synaptosomes to mimic possible defects associated with Parkinson's and Huntington's diseases respectively, sensitizes individual terminals to mitochondrial depolarization under conditions of enhanced proton current utilization, even though these stresses are within the respiratory capacity of the synaptosomes when averaged over the entire population. We combine two novel techniques, firstly using a modification of a plate-based respiration and glycolysis assay that requires only microgram quantities of synaptosomal protein, and secondly developing an improved method for fluorescent imaging and statistical analysis of single synaptosomes. Conditions are defined for optimal substrate supply to the in situ mitochondria within mouse cerebrocortical synaptosomes, and the energetic demands of ion cycling and action-potential firing at the plasma membrane are additionally determined.  相似文献   

10.
The response of the respiratory subsystem of oxidative phosphorylation to the environmental pollutant, 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) was investigated by modular kinetic approach. The effects of 20 M 2,2',5,5'-TCB on the activity of the respiratory chain modules in rat liver mitochondria oxidizing succinate (+ rotenone) in state 3 were assessed. The toxin inhibited the rate of respiration by 23%. Analysis around cytochrome c revealed that 2,2',5,5'-TCB inhibited both cytochrome c-oxidizing and - reducing modules. The toxin inhibited also CoQ-oxidizing module, however it did not affect the kinetics of CoQ-reducing module. Taken together, these data indicated that 2,2',5,5'-TCB inhibited cytochrome bc1 but had no effect on succinate dehydrogenase.  相似文献   

11.
Trypanosoma cruzi Y reference strain is found in many laboratories under at least two highly distinct genotypes, A and B corresponding to the 'discrete typing units' T. cruzi IIb and T. cruzi IId, respectively. Previous work has reported reversible switches between these genotypes according to the culture media used in the experiments: genotype A would be associated with blood-enriched culture media, while genotype B would be associated with blood-free culture media. We tried to reproduce this observation, but used a different cloning method of individual organisms. Our cloning was verified visually under the microscope, while the previous studies relied on a cloning by dilution only. The subclones so obtained were submitted to long-term exposure to both media, and no change was observed in isoenzyme and random amplified polymorphic DNA genotypes. The discrepancy is probably explained by the cloning method: clones obtained from the previous method (dilution and plating) could come from several parasite cells while only one cell generates a clone when micro-manipulation is used.  相似文献   

12.
ABSTRACT. [35S]methionine incorporation into proteins of either T. cruzi epimastigotes or trypomastigotes was drastically inhibited by low concentrations of crystal violet in a dose-dependent manner. This inhibition was not due to ATP depletion since cellular ATP levels did not change significantly after incubation of epimastigotes with 50 μM crystal violet for similar periods of time, and was unaffected by changes in the extracellular free calcium concentration. Although crystal violet was able to inhibit protein synthesis in a cell-free system from T. cruzi epimastigotes, half maximal inhibition was at 1 mM, a concentration three orders of magnitude higher than those that inhibited protein synthesis in intact cells. On the other hand, crystal violet was able to inhibit total [35S]methionine uptake at similar concentrations to those that inhibited protein synthesis while addition of increasing concentrations of cold methionine to the incubation medium protected the cells against crystal violet inhibition. Crystal violet also inhibited total [3H]proline uptake thus indicating that it has a general inhibitory effect upon the transport of amino acids, and not specifically upon methionine. These results indicate that inhibition of protein synthesis by crystal violet is probably due to inhibition of amino acid uptake.  相似文献   

13.
Cultured rat cerebellar granule neurons were incubated with low nanomolar concentrations of the protonophore carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) to test the hypothesis that 'mild uncoupling' could be neuroprotective by decreasing oxidative stress. To quantify the uncoupling, respiration and mitochondrial membrane potential (Deltapsi(m)) were determined in parallel as a function of FCCP concentration. Deltapsi(m) dropped by less than 10 mV before respiratory control was lost. Conditions for the valid estimation of matrix superoxide levels were determined from the rate of oxidation of the matrix-targeted fluorescent probe MitoSOX. No significant change in the level of matrix superoxide could be detected on addition of FCCP while respiratory control was retained, although cytoplasmic superoxide levels measured by dihydroethidium oxidation increased. 'Mild uncoupling' by 30 nmol/L FCCP did not alleviate neuronal dysregulation induced by glutathione depletion and significantly enhanced that due to menadione-induced oxidative stress. Low protonophore concentrations enhanced N-methyl-d-aspartate receptor-induced delayed calcium deregulation consistent with a decrease in the spare respiratory capacity available to match the bioenergetic demand of chronic receptor activation. It is concluded that the 'mild uncoupling' hypothesis is not supported by this model.  相似文献   

14.
Trypanosoma cruzi epimastigotes were sonicated in a medium containing sucrose, albumin, and calcium as stabilizers, to yield mainly unbroken parasites and free flagella. The latter were separated, first by differential centrifugation and finally by an isopicnic centrifugation, in a discontinuous sucrose gradient. The flagella obtained in the 1.661.84 M interphase show, by electron microscopy, the typical axonemal structure surrounded by the flagellar membrane and are completely free of extraneous subcellular components. They are also very homogeneous by polyacrylamide gel electrophoresis and enzyme marker criteria. The purified flagella were further subfractionated into well-preserved axonemes and a soluble flagellar membrane preparation. In order to detect in these fractions only the parasite immunogens that elicit a humoral response in humans, sera of chagasic patients were exclusively used. Indirect immunofluorescence reveals that both intact and membrane-free flagella are reactive. Passive hemagglutination and complement fixation of the flagellar membrane and axonemal fractions show a 21- and 8-fold purification, respectively, over a standard (Maekelt) antigen used for diagnostic purposes. Approximately 10% of the antigenicity of the total parasite is found in the flagellum, and two-thirds of this in the membrane. Double-immunodiffusion tests reveal the presence of two antigens in the axonemes and four in the flagellar membranes, one of which is common with one of the three antigens detected in a total parasite membrane fraction. The high degree of flagellar purification achieved here and the use of chagasic sera allow to conclude that at least six antigenic determinants for humoral response in humans are present in the flagellum of T. cruzi epimastigotes, two of them localized in the axoneme and four in the flagellar membrane.  相似文献   

15.
We modified the isolation procedure of muscle and heart mitochondria. In human muscle, this resulted in a 3.4 fold higher yield of better coupled mitochondria in half the isolation time. In a preparation from rat muscle we studied factors that affected the stability of oxidative phosphorylation (oxphos) and found that it decreased by shaking the preparation on a Vortex machine, by exposure to light and by an increase in storage temperature. The decay was found to be different for each substrate tested. The oxidation of ascorbate was most stable and less sensitive to the treatments.When mitochondria were stored in the dark and the cold, the decrease in oxidative phosphorylation followed first order kinetics. In individual preparations of muscle and heart mitochondria, protection of oxidative phosphorylation was found by adding candidate stabilizers, such as desferrioxamine, lazaroids, taurine, carnitine, phosphocreatine, N-acetylcysteine, Trolox-C and ruthenium red, implying a role for reactive oxygen species and calcium-ions in the in vitro damage at low temperature to oxidative phosphorylation.In heart mitochondria oxphos with pyruvate and palmitoylcarnitine was most labile followed by glutamate, succinate and ascorbate.We studied the effect of taurine, hypotaurine, carnitine, and desferrioxamine on the decay of oxphos with these substrates. 1 mM taurine (n = 6) caused a significant protection of oxphos with pyruvate, glutamate and palmitoylcarnitine, but not with the other substrates. 5 mM L-carnitine (n = 6), 1 mM hypotaurine (n = 3) and 0.1 mM desferrioxamine (n = 3) did not protect oxphos with any of the substrates at a significant level.These experiments were undertaken in the hope that the in vitro stabilizers can be used in future treatment of patients with defects in oxidative phosphorylation. (Mol Cell Biochem 174: 61–66, 1997)  相似文献   

16.
Sitbon F  Jonsson L 《Planta》2001,212(4):568-572
Transgenic tobacco (Nicotiana tabacum L.) plants with altered sterol composition were generated by transformation with plant cDNAs encoding type-1 and type-2 sterol methyltransferases (SMTs; EC 2.1.1.41). For both SMT1 and SMT2 transformants, the transformation was associated with a reduction in the level of cholesterol, a non-alkylated sterol. In SMT1 transformants a corresponding increase of alkylated sterols, mainly 24-methyl cholesterol, was observed. On the other hand, in SMT2 transformants the level of 24-methyl cholesterol was reduced, whereas the level of sitosterol was raised. No appreciable alteration of total sterol content was observed for either genotype. The general phenotype of transformants was similar to that of controls, although SMT2 transformants displayed a reduced height at anthesis. The results show that plant sterol composition can be altered by transformation with an SMT1 cDNA without adverse effects on growth and development, and provide evidence, in planta, that SMT1 acts at the initial step in sterol alkylation. Received: 27 June 2000 / Accepted: 22 July 2000  相似文献   

17.
Lipophilic phosphonium cations were first used to investigate mitochondrial biology by Vladimir Skulachev and colleagues in the late 1960s. Since then, these molecules have become important tools for exploring mitochondrial bioenergetics and free radical biology. Here we review why these molecules are useful in mitochondrial research and outline some of the ways in which they are now being utilized.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 273–283.Original Russian Text Copyright ¢ 2005 by Ross, Kelso, Blaikie, James, Cochemé, Filipovska, Da Ros, Hurd, Smith, Murphy.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

18.
The energy-transducing N,N′-dicyclohexylcarbodiimide-sensitive (DCCD-sensitive) ATPase complex consists of two parts, a soluble catalytic protein (F1), and an intrinsic membrane protein (F0). The bacterial coupling factor complex, BCF0-BCF1, has recently been purified from Mycobacterium phlei, and used to reconstitute oxidative phosphorylation in detergent-extracted membranes. The BCF0 moiety has been purified by being recovered from the purified BCF0-BCF1 complex by affinity chromatography. BCF0 is a lipoprotein or lipoprotein complex with an approximate molecular weight of 60,000. The preparation contained 0.15 mg of phospholipid per milligram protein. There appear to be three polypeptides, with approximate molecular weights of 24,000, 18,000, and 8,000 as determined by sodium dodecylsulfate a crylamide gel electrophoresis. Purified BCF0 conferred DCCD sensitivity on a purified BCF1 preparation. Reconstitution of oxidative phosphorylation was achieved after incubation of detergent-extracted membranes with purified BCF0 and purified BCF1.  相似文献   

19.
氧化应激下植物线粒体自噬分析   总被引:1,自引:0,他引:1  
线粒体自噬,是指通过选择性的识别并清除损伤、衰老及功能紊乱的线粒体,对维持细胞内线粒体质量和数量的平衡产生了重要作用。与动物和酵母中线粒体自噬的研究进展相比,植物线粒体自噬的途径及具体调控机制尚不明确。基于GFP标签,本文探究了氧化胁迫下植物线粒体自噬发生情况。研究发现甲基紫精诱导线粒体在液泡中积累,并呈现两种状态:1) GFP小体包含的线粒体; 2)不含GFP的线粒体。本研究发展的GFP标签策略可为植物线粒体自噬关键调控因子的筛选提供借鉴。  相似文献   

20.
The enzyme NADH-fumarate reductase is not found in mammalian cells but it is present in several parasitic protozoa including Trypanosoma cruzi, the parasite that causes Chagas' disease. This study shows that the drug 2-mercaptopyridine-N-oxide (MPNO) inhibits NADH-fumarate reductase purified from T. cruzi (ID50 = 35 microM). When added to intact cells, MPNO inhibited the growth of T. cruzi epimastigotes in culture (ID50 = 0.08 microM) as well as the infection of mammalian myoblasts by T. cruzi trypomastigotes (ID50 = 20 microM). At a concentration of 2.4 microM, MPNO also inhibited the growth of amastigotes (intracellular dividing forms) in cultured mammalian myoblasts. Supplementation of culture media with 5 mM succinate, the product of fumarate reductase, partially protected against the inhibition of the growth of epimastigotes by MPNO. Moreover, MPNO inhibited the accumulation of succinate in cultures of epimastigotes, as measured by high performance liquid chromatography. Although MPNO may have other intracellular targets in addition to fumarate reductase, these results support the hypothesis that compounds which inhibit the enzyme fumarate reductase may be potential chemotherapeutic agents against Chagas' disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号