首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleoside diphosphate kinase (Ndk) is an important enzyme that generates nucleoside triphosphates (NTPs) or their deoxy derivatives by terminal phosphotransfer from an NTP such as ATP or GTP to any nucleoside diphosphate or its deoxy derivative. As NTPs, particularly GTP, are important for cellular macromolecular synthesis and signalling mechanisms, Ndk plays an important role in bacterial growth, signal transduction and pathogenicity. Specific examples of the role of Ndk in regulating growth, NTP formation and cell surface polysaccharide synthesis in two respiratory tract pathogens, Pseudomonas aeruginosa and Mycobacterium tuberculosis , are discussed.  相似文献   

2.
Reenstra WW  Crothers J  Forte JG 《Biochemistry》2007,46(35):10145-10152
The gastric H,K-ATPase is related to other cation transport ATPases, for example, Na,K-ATPase and Ca-ATPase, which are called E1-E2 ATPases in recognition of conformational transitions during their respective transport and catalytic cycles. Generally, these ATPases cannot utilize NTPs other than ATP for net ion transport activity. For example, under standard assay conditions, rates of NTP hydrolysis and H+ pumping by the H,K-ATPase for CTP are about 10% of those for ATP and undetectable with GTP, ITP, and UTP. However, we observed that H,K-ATPase will catalyze NTP/ADP phosphate exchange at similar rates for all of these NTPs, suggesting that a common phosphoenzyme intermediate is formed. The present study was undertaken to evaluate the specificity of nucleotides to power the H,K-ATPase and several of its partial reactions, including NTP/ADP exchange, K+-catalyzed phosphatase activity, and proton pumping. Results demonstrate that under conditions that promote the conformational change of the K+ bound form of the enzyme, K.E2, to E1, all NTPs tested support K+-stimulated NTPase activity and H+ pumping up to 30-50% of that with ATP. These conditions include (1) the presence of ADP as well as the NTP energy source and (2) reduced K+ concentration on the cytoplasmic side to approximately 0. These data conform to structural models for E1-E2 ATPases whereby adenosine binding promotes the K.E2 to E1 conformational change and K+ deocclusion.  相似文献   

3.
Double-stranded RNA bacteriophage phi 6 has an envelope surrounding the nucleocapsid (NC). The NC is composed of a surface protein, P8, and proteins P1, P2, P4, and P7, which form a dodecahedral polymerase complex enclosing the segmented viral genome. Empty polymerase complex particles (procapsids) package positive-sense viral single-stranded RNAs provided that energy is available in the form of nucleoside triphosphates (NTPs). Photoaffinity labelling of both the NC and the procapsid has earlier been used to show that ATP binds to protein P4 and that the NC hydrolyzes NTPs. Using the NC and the NC core particles (NCs lacking surface protein P8) and purified protein P4, we demonstrate here that multimeric P4 is the active NTPase. Isolation of multimeric P4 is successful only in the presence of NTPs. The activity of P4 is the same in association with the viral particles as it is in pure form. P4 is an unspecific NTPase hydrolyzing ribo-NTPs, deoxy NTPs, and dideoxy NTPs to the corresponding nucleoside diphosphates. The Km of the reaction for ATP, GTP, and UTP is around 0.2 to 0.3 mM. The NTP hydrolysis by P4 absolutely requires residual amounts of Mg2+ ions and is greatly activated when the Ca2+ concentration reaches 0.5 mM. Competition experiments indicate that Mg2+ and Ca2+ ions have approximately equal binding affinities for P4. They might compete for a common binding site. The nucleotide specificity and enzymatic properties of the P4 NTPase are similar to the NTP hydrolysis reaction conditions needed to translocate and condense the viral positive-sense RNAs to the procapsid particle.  相似文献   

4.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

5.
6.
Transcriptional proofreading in Escherichia coli.   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

7.
To examine the effect of CTP, GTP, ITP, and UTP on calcium binding of Ca2+-ATPase molecules of the sarcoplasmic reticulum, the calcium dependence of the Ca2+-activated hydrolysis activities of these NTPs of the enzyme molecules was examined by comparison with that of calcium binding of the molecules in the absence of the NTPs at pH 7.40. In the sarcoplasmic reticulum membrane, CTP, GTP, and ITP did not affect the noncooperative (Hill value (n(H)) of approximately 1, apparent calcium affinity (K(0.5)) of 2-6 microm)) and cooperative (n(H) approximately 2, K(0.5) approximately 0.2 microm) calcium binding of the molecules, whereas UTP caused the molecules to highly cooperatively (n(H) approximately 4) bind calcium ions with a lowered K(0.5) of approximately 0.04 microm. When the enzyme molecules were solubilized with detergent, all of these NTPs reversibly degraded the calcium affinity of the molecule (from K(0.5) = 3-5 to >40 microm), although the effect of the NTPs on the negatively cooperative manner (n(H) approximately 0.5) of calcium binding was not experimentally obtained. Taking into account the first part of this study (Nakamura, J., Tajima, G., Sato, C., Furukohri, T., and Konishi, K. (2002) J. Biol. Chem. 277, 24180-24190) showing the improving effect of ATP on calcium binding of the membranous and solubilized molecules, the results show that ATP is the only intrinsic substrate for the enzyme molecule. This NTP regulation is discussed in terms of the oligomeric structure of the molecules.  相似文献   

8.
9.
10.
Guanosine 5'-triphosphate (GTP) was found to inhibit guinea pig liver transglutaminase activity as measured by [3H]putrescine incorporation into casein. GDP and GTP-gamma-S also inhibited enzyme activity (GTP-gamma-S greater than GTP greater than GDP). Kinetic studies showed that GTP acted as a reversible, noncompetitive inhibitor and that CaCl2 partially reversed GTP inhibition. GTP also inhibited rat liver and adult bovine aortic endothelial cell transglutaminase, but did not inhibit Factor XIIIa activity. Guanosine monophosphate (GMP), cyclic GMP, and polyguanylic acid did not inhibit enzyme activity. Guinea pig liver transglutaminase adsorbed well to GTP-agarose affinity columns, but not to CTP-agarose columns, and the binding was inhibited by the presence of calcium ions. Specific binding of GTP to transglutaminase was demonstrated by photoaffinity labeling with 8-azidoguanosine 5'-[gamma-32P] triphosphate, which was inhibited by the presence of GTP or CaCl2. GTP inhibited trypsin proteolysis of guinea pig liver transglutaminase without affecting the trypsin proteolysis of chromogenic substrates. Proteolytic protection was reversed by the addition of calcium. This study demonstrates that GTP binds to transglutaminase and that both GTP and calcium ions function in concert to regulate transglutaminase structure and function.  相似文献   

11.
12.
13.
Beef liver mitochondrial F1ATPase was inactivated by the 2',3'-dialdehyde derivative of ethenoATP (epsilon ATP) in a pseudo-first order reaction. The kinetics of protection of the enzyme against inactivation by various nucleoside triphosphates (NTPs) revealed that the dial-epsilon ATP was bound to the catalytic site as an affinity label. Certain anions (sulfate or bicarbonate) were ineffective for protection. In the early phase of the reaction, inactivation was due to the binding of 1 mol dial-epsilon ATP per mol enzyme. In this phase, dial-epsilon ATP bound exclusively to the subunit beta of the enzyme, indicating that the catalytic site is in this subunit. The fluorescence of the ethenoadenosine moiety, bound exclusively to the subunit beta of the enzyme, was measured as a conformational probe of the catalytic site region. Addition of ATP or CTP to the labeled enzyme resulted in a decrease in the fluorescence intensity. GTP and other NTPs were less effective than ATP or CTP. The anions (sulfate of bicarbonate) suppressed the ability of ATP to decrease the fluorescence in a competitive manner. Quantitative analysis of these fluorescence changes suggested that they might originate from the binding of the NTP to the regulatory site of the enzyme. These findings are in good agreement with the two-site model proposed by us (Wakagi, T. & Ohta, T. (1981) J. Biochem. 89, 1205) which was deduced from the steady state kinetics of the NTPase reactions catalyzed by the F1ATPase.  相似文献   

14.
Karpe YA  Aher PP  Lole KS 《PloS one》2011,6(7):e22336
Chikungunya virus (CHIKV) is an insect borne virus (genus: Alphavirus) which causes acute febrile illness in humans followed by a prolonged arthralgic disease that affects the joints of the extremities. Re-emergence of the virus in the form of outbreaks in last 6-7 years has posed a serious public health problem. CHIKV has a positive sense single stranded RNA genome of about 12,000 nt. Open reading frame 1 of the viral genome encodes a polyprotein precursor, nsP1234, which is processed further into different non structural proteins (nsP1, nsP2, nsP3 and nsP4). Sequence based analyses have shown helicase domain at the N-terminus and protease domain at C-terminus of nsP2. A detailed biochemical analysis of NTPase/RNA helicase and 5'-RNA phosphatase activities of recombinant CHIKV-nsP2T protein (containing conserved NTPase/helicase motifs in the N-terminus and partial papain like protease domain at the C-terminus) was carried out. The protein could hydrolyze all NTPs except dTTP and showed better efficiency for ATP, dATP, GTP and dGTP hydrolysis. ATP was the most preferred substrate by the enzyme. CHIKV-nsP2T also showed 5'-triphosphatase (RTPase) activity that specifically removes the γ-phosphate from the 5' end of RNA. Both NTPase and RTPase activities of the protein were completely dependent on Mg(2+) ions. RTPase activity was inhibited by ATP showing sharing of the binding motif by NTP and RNA. Both enzymatic activities were drastically reduced by mutations in the NTP binding motif (GKT) and co-factor, Mg(2+) ion binding motif (DEXX) suggesting that they have a common catalytic site.  相似文献   

15.
The enzyme aspartate transcarbamoylase (ATCase, EC 2.1.3.2 of Escherichia coli), which catalyzes the committed step of pyrimidine biosynthesis, is allosterically regulated by all four ribonucleoside triphosphates (NTPs) in a nonlinear manner. Here, we dissect this regulation using the recently developed approach of random sampling-high-dimensional model representation (RS-HDMR). ATCase activity was measured in vitro at 300 random NTP concentration combinations, each involving (consistent with in vivo conditions) all four NTPs being present. These data were then used to derive a RS-HDMR model of ATCase activity over the full four-dimensional NTP space. The model accounted for 90% of the variance in the experimental data. Its main elements were positive ATCase regulation by ATP and negative by CTP, with the negative effects of CTP dominating the positive ones of ATP when both regulators were abundant (i.e., a negative cooperative effect of ATP x CTP). Strong sensitivity to both ATP and CTP concentrations occurred in their physiological concentration ranges. UTP had only a slight effect, and GTP had almost none. These findings support a predominant role of CTP and ATP in ATCase regulation. The general approach provides a new paradigm for dissecting multifactorial regulation of biological molecules and processes.  相似文献   

16.
Several nucleotide triphosphates (NTPs) were tested as energy source for the Ca2+ uptake by human platelet membrane vesicles. The Ca2+ uptake by these membranes was driven by ATP, GTP, ITP, UTP and CTP. The steady-state level of accumulated Ca2+ was equal with the different NTPs. The highest uptake velocity was found with ATP, but about 40–80% of the velocity with ATP could be accomplished with the other nucleotides. The highest affinity was also found with ATP (Km apparent  15 μM). The liberation of Pi from the various NTPs was measured simultaneously with the Ca2+ uptake. The coupling ratio (moles of Ca2+ taken up/moles of Pi liberated) varied from 0.4 for ATP to 2.3 for UTP and was almost independent of the NTP concentration. The enzyme activity with ATP as substrate is strongly dependent on the Ca2+ concentration in contrast to the activity with GTP, ITP, UTP or CTP.  相似文献   

17.
18.
Wigle TJ  Lee AM  Singleton SF 《Biochemistry》2006,45(14):4502-4513
The roles of the RecA protein in the survival of bacteria and the evolution of resistance to antibiotics make it an attractive target for inhibition by small molecules. The activity of RecA is dependent on the formation of a nucleoprotein filament on single-stranded DNA that hydrolyzes ATP. We probed the nucleotide binding site of the active RecA protein using modified nucleotide triphosphates to discern key structural elements of the nucleotide and of the binding site that result in the activation of RecA for NTP hydrolysis. Our results show that the RecA-catalyzed hydrolysis of a given nucleotide triphosphate or analogue thereof is exquisitely sensitive to certain structural elements of both the base and ribose moieties. Furthermore, our ligand-based approach to probing the RecA ATP binding site indicated that the binding of nucleotides by RecA was found to be conformationally selective. Using a binding screen that can be readily adapted to high-throughput techniques, we were able to segregate nucleotides that interact with RecA into two classes: (1) NTPs that preferentially bind the active nucleoprotein filament conformation and either serve as substrates for or competitively inhibit hydrolysis and (2) nonsubstrate NTPs that preferentially bind the inactive RecA conformation and facilitate dissociation of the RecA-DNA species. These results are discussed in the context of a recent structural model for the active RecA nucleoprotein filament and provide us with important information for the design of potent, conformationally selective modulators of RecA activities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号