首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pigeon erythrocytes expelled preloaded 45Ca2+ in response to a low dose of A23187 at 0° C. We call this phenomenon ‘paradoxical’ expulsion. Within the first minute, 1.85 ± 0.38 μmol/l cell water was expelled; after that the internal 45Ca2+ began to rise. The rises in Ca2+ uptake with and without A23187 addition were essentially paralleled. No premonitory rise of 45Ca2+ upon the addition of A23187 was observed. Expulsion of 45Ca2+ in response to A23187 was probably by the action of the Ca2+ pump and not by Na+-Ca2+ exchange since vanadate inhibited, but K+ replacement of Na+ in the medium had no effect. Lysophosphatidylcholine (lysoPC) caused an abrupt increase in 45Ca2+ influx by cells at 0° C and was dose dependent. However, a very low dose of lysoPC induced expulsion of preloaded 45Ca2+ similar to that by A23187, the response was fast and transitory, without any premonitory rise in 45Ca2+ uptake. The results lend support to the suggestion that the signal to which cells respond may be a sudden change in Ca2+ influx per se rather than a change in internal Ca2+ concentration. These features of ‘paradoxical’ 45Ca2+ expulsion induced by A23187 and lysoPC are not expected from mass-action equilibria but, instead, agree with the characteristics of an energy-dissipating control mechanism.  相似文献   

2.
J W Lee  G A Vidaver 《Cell calcium》1984,5(6):501-524
Cells were subjected to a range of 45Ca2+ influx loads with A23187. We measured cell 45Ca2+ with time and A23187 dose, and the apparent 45Ca2+ influxes (identical to "J(in,app)") at Ca2+ steady state. We also measured endogeneous exchangeable and total cell Ca2+, which were 50 and 17-220 microM respectively. The effects of A23187 and Ca2+ on cell ATP, swelling, net Cl- permeability, and cell morphology were measured. These were modest and do not affect our conclusions. J(in,app) congruent to 3 X 10(-4) [A23187]2.9 X [Ca2+(o)]mumoles/l X min with 92-552 microM [Ca2+(o)] (identical to external Ca2+ concentration) and 0-7 microM A23187. J(in,app) was increased an order of magnitude by vanadate and is probably much less than the true influx. The least unlikely explanation found for the high [A23187] exponent, 2.9, was that most of the Ca2+ crossing the membrane is expelled by the pump before it can move deeper into the cell. Calcium pumping increased rapidly in response to increased influx, but the steady state cell 45Ca2+ was approximately proportional to J(in,app) rather than approximately constant between 10 and 120 mumoles/l X min with 184 microM [Ca2+(o)]. This is not the result expected from a simple feedback mechanism. At high A23187 doses the pump appears fully activated resulting in a linear relation between cell/medium 45Ca2+ and [A23187]-2. From the plot we calculated alpha identical to free/total exchangeable Ca2+ = 0.38 +/- 0.08 (n = 3) and a maximum pump rate, "Pmax" = 78 mumole/l X min. Pmax is underestimated insofar as J(in,app) is less than the true influx.  相似文献   

3.
Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin   总被引:7,自引:0,他引:7  
Human neutrophils, preloaded with the fluorescent probe, Fura-2, were exposed to Ca2+-releasing agents. The monitored traces of fluorescence were transformed by computer to cytosolic Ca2+ concentration ([ Ca2+]i). Due to quenching of Fura-2, the addition of Mn2+ enabled us to compute the cytosolic concentration of total manganese ([Mn]i). The agents used were the novel Ca2+-mobilizing agent, thapsigargin (Tg), the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP), and the divalent cation ionophore, A23187. The agents caused transient rises of [Ca2+]i and monotonous rises of [Mn]i, suggesting influx but no efflux of Mn2+. The rise time of [Ca2+]i and the time constants and magnitude of the apparent Mn2+ influx were strongly dependent on the sequence of addition of the agonist and Ca2+. Contrary to FMLP, Tg needed several minutes to exert its full effect on the rise of [Ca2+]i and on the influx of Mn2+, the latter being dependent on two phases, activation and partial inactivation. Pretreatment with phorbol 12-myristate 13-acetate (PMA) inhibited the responses of Tg, FMLP and A23187. For comparison, human red blood cells were tested. Contrary to A23187, Tg did not induce Ca2+ uptake in ATP-depleted red cells but increased the Ca2+ pump flux in intact red cells by 10%. The experimental data and computer simulations of the granulocyte data suggest that time-dependent changes of both passive Ca2+ flux into the cytosol and Ca2+ flux of the plasma membrane pump are involved in the transient [Ca2+]i response.  相似文献   

4.
J W Lee  G A Vidaver 《Cell calcium》1984,5(6):525-536
Pigeon erythrocytes did not behave as expected from simple feedback mechanisms. The pool size for exchangeable cell Ca2+ was approximately proportional to the A23187-induced apparent 45Ca2+ influx ("J(in,app)") from 0.4 to 14 mumoles/min X l cell water at 184 microM external [Ca2+]. From earlier data, total cell 45Ca2+ was approximately proportional to J(in,app) from 10 to 120 mumoles/l X min. Thus there was no influx range where cell 45Ca2+ was held approximately constant. External [Ca2+] affected Ca2+ pool size independently of its effect of J(in,app). Trifluoperazine did not increase cell 45Ca2+ with or without A23187. In the presence of A23187, 45Ca2+ entered a pool early in the incubation which later became inaccessible to 45Ca2+ entry and exit. Lysolecithin addition produced an abrupt rise in cell 45Ca2+, much of which occupied a pool that quickly became inaccessible. The increased 45Ca2+ influx induced by lysolecithin dropped quickly and markedly with time. It is hard to explain inaccessible pool(s), especially in the presence of A23187 by membrane-bounded compartments. We suggest that nonexchangeable 45Ca2+ might be held by an energy-dependent binding protein(s).  相似文献   

5.
Lanthanides (La3+, Pr3+ and Tb3+) inhibit Na+-gradient-dependent Ca2+ influx into synaptic plasma membrane vesicles. 50% inhibition is obtained by 7 microM lanthanide concentration. The inhibition of the Na+-gradient-dependent Ca2+ uptake exhibits competitive kinetic behaviour. The apparent Km of the Ca2+ influx is increased from 50 microM in the absence of lanthanides to 118 microM in the presence of La3+, 170 microM in the presence of Pr3+ and 130 microM in the presence of Tb3+. The maximal reaction velocity is not altered (8.35 nmol Ca2+ transported per mg protein per min in the absence of lanthanides and 8.16 nmol/mg per min in the presence of lanthanides). Lanthanides also inhibited Na+-gradient-dependent Ca2+ efflux from synaptic plasma membrane vesicles that were preloaded with Ca2+ in a Na+-gradient-dependent manner. Introduction of La3+ into the interior of the synaptic plasma membrane vesicles by rapid freezing of the vesicles in liquid N2 and slow thawing had no effect on either Na+-gradient-dependent Ca2+ influx or efflux. Synaptic plasma membrane vesicles can be preloaded with Ca2+ also in an ATP-dependent manner. This form of Ca2+ uptake is also inhibited by La3+ though at higher concentrations than the Na+-gradient-dependent Ca2+ uptake. Na+-gradient-dependent efflux from synaptic plasma membrane vesicles preloaded in an ATP-dependent fashion ('inside-out' vesicles) unlike efflux from synaptic plasma membrane vesicles preloaded in a Na+-gradient-dependent manner was not inhibited by La3+. These findings suggest that the inhibition by La3+ is manifested asymmetrically on both sides of the synaptic plasma membrane. Lanthanides are probably not transported via the Na+-Ca2+ exchanger since Tb3+ entry measured by fluorescence of Tb3+-dipicolinic acid complex formation occurred at high Tb3+ concentrations only (1.5 mM or above) and was not Na+-gradient dependent.  相似文献   

6.
Gangliosides suppress lymphocyte mitogenesis when added exogenously to the cells. On the premise that the mechanism of ganglioside action may be an interference with primary induction events, mitogen-induced 45Ca2+ influx in murine lymphocytes was studied. Disialoganglioside (GD1a) at physiopathological concentrations inhibits concanavalin A-induced 45Ca2+ uptake as well as blast transformation. The suppressive action of GD1a is both concentration dependent (50% suppression at 13 microM) and very rapid (within 1 min). GD1a is not cytotoxic nor does it significantly alter the rate of Ca2+ efflux. The uptake studies were extended to A23187, a compound with mitogenic and specific divalent cation ionophore activities. Ca2+ uptake by lymphoid cells from AKR/J, Swiss, and CBA mice is stimulated by A23187; and GD1a, in a dose-dependent manner, inhibits the ionophore-induced 45Ca2+ influx. Pretreatment of thymocytes with GD1a renders the cells greatly insensitive to the subsequent ionophore activity of A23187. The results suggest that exogenous gangliosides may function as an inhibitor of some of the mitogen-triggered early events, including Ca2+ metabolism, and thus influence the immunological behavior of intact lymphoid cells.  相似文献   

7.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

8.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

9.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

10.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

11.
We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2+ ionophore A23187. Stimulation at 1 Hz for 120-240 min caused an increase in 45Ca uptake that was closely correlated to LDH release. This LDH release increased markedly with temperature. After 120 min of stimulation at 1 Hz, resting 45Ca uptake was increased 5.6-fold compared with unstimulated muscles. This was associated with an eightfold increase in LDH release, and this effect was halved by lowering extracellular Ca2+ concentration ([Ca2+]o). The poststimulatory increase in resting 45Ca uptake persisted for at least 120 min. An acute increase in sarcolemma leakiness induced by electroporation markedly increased 45Ca uptake and LDH leakage. Both effects depended on [Ca2+]o. A23187 increased 45Ca uptake. Concomitantly, LDH leakage increased 18-fold within 30 min, and this effect was abolished by omitting Ca2+ from the buffer. We conclude that increased Ca2+ influx may be an important cause of cell membrane damage that arises during and after exercise or electrical shocks. Because membrane damage allows further influx of Ca2+, this results in positive feedback that may further increase membrane degeneration.  相似文献   

12.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

13.
We investigated the hypothesis that extracellular Na+ is required for the rapid mobilization of Ca2+ by rat parotid cells after adrenergic stimulation. When Na+ salts in the media were osmotically replaced with either choline chloride (+atropine) or sucrose, efflux of 45Ca2+ from preloaded cells, caused by 10 microM-(-)-adrenaline, was unchanged. Similarly adrenaline stimulated 45Ca2+ uptake into cells under nonsteady-state conditions in the presence or absence of Na+. Monensin, a Na+ ionophore, was able to elicit a modest increase in 45Ca2+ efflux, compared with controls. Studies of net 45Ca2+ flux, performed under near-steady-state conditions, showed that adrenaline caused net 45Ca2+ accumulation, whereas monensin caused net 45Ca2+ release. The effect of monensin required the presence of Na+ in the incubation medium. Both 1 mM-LaCl3 and 0.1 mM-D-600 prevented adrenaline-stimulated 45Ca2+ uptake into cells, but had no effect on monensin-induced changes. We conclude that (1) the rapid mobilization of Ca2+ by adrenergic agonists seen in rat parotid cells does not require a Na+out greater than Na+in gradient and (2) the nature of the monensin effect is quite different from the adrenergic-agonist-induced response.  相似文献   

14.
The modulation of the intrasynaptosomal concentration of Ca2+, [Ca2+]i, by Na+/Ca2+ exchange was studied using Indo-1 fluorescence. The electrochemical gradient of Na+ was manipulated by substituting Li+ or choline for Na+ in the external medium and, then, the influx of 45Ca2+ and the [Ca2+]i were measured. It was found that the increase in [Ca2+]i induced by K+ depolarization is lower if the value of [Ca2+]i has been previously raised by Na+/Ca2+ exchange, suggesting that Ca2+ entering by Na+/Ca2+ exchange reduces the Ca2+ entering by voltage-dependent calcium channels. Our results show that a value of [Ca2+]i of about 650 nM induced by Na+/Ca2+ exchange reduces by 50% the Ca2+ entering due to K+ depolarization and no Ca2+ enters through the channels if the [Ca2+]i is previously raised above about 800 nM. Furthermore, predepolarization of the synaptosomes in a Ca-free medium also inhibits by at least 40% the [Ca2+]i rise through Ca2+ channels. Thus, the results suggest that both predepolarization and [Ca2+]i rise due to Na+/Ca2+ exchange decrease the Ca2+ entering by voltage-sensitive Ca2+ channels. The Ca2+ entering by Na+/Ca2+ exchange might contribute to the regulation of neurotransmitter release. Our results also show that the presence of Li+ in the external medium decreases the buffering capacity of synaptosomes, probably by releasing Ca2+ from mitochondria by Li+/Ca2+ exchange.  相似文献   

15.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

16.
N-Ethylmaleimide dose dependently inhibited platelet aggregation induced by collagen or arachidonate but did not inhibit the aggregation by thrombin or ionophore A23187 within the concentrations tested. [3H]Arachidonate release from membrane phospholipids of the collagen-stimulated platelets was inhibited by N-ethylmaleimide in parallel with the inhibition of aggregation, but not in response to A23187. N-Ethylmaleimide prevented 45Ca2+ influx into platelet cells from outer medium induced by collagen, and also inhibited the increase in the concentration of cytoplasmic free Ca2+, which probably results from Ca2+ influx, as monitored by quin2 fluorescence, under stimulation with arachidonate. The concentration of N-ethylmaleimide giving a complete inhibition of Ca2+ influx was consistent with that required to inhibit collagen- or arachidonate-induced aggregation. Prostaglandin metabolism from arachidonate to thromboxane A2 was not disturbed by N-ethylmaleimide, while phosphatidate formation induced by arachidonate was slightly inhibited by it at concentrations at which aggregation was completely inhibited. These data suggest that N-ethylmaleimide preferentially suppresses increase in cytoplasmic free Ca2+ which is linked to thromboxane A2-receptor occupation in collagen- or arachidonate-stimulated platelets, probably due to blockage of Ca2+ influx through Ca2+-channel protein, thereby inhibiting aggregation induced by these agonists.  相似文献   

17.
The activity of the Na(+)-Ca2+ exchanger, which regulates the entry and the extrusion of Ca2+ ions from nerve endings was investigated in Percoll-purified cerebrocortical synaptosomes of aged rats. 45Ca2+ uptake in a Na(+)-free medium and 45Ca2+ efflux in a 145 mM Na+ medium were significantly reduced in cerebrocortical synaptosomes from aged rats (24 months) as compared to those occurring in young (4 months) and mature (14 months) rats. 45Ca2+ influx induced by 55 mM K+, a concentration of K+ ions which selectively promotes Ca2+ entry through voltage-sensitive Ca2+ channels (VSCC), was significantly reduced in mature and aged rats as compared to that occurring in young rats. The impairment of these mechanisms in aged rats is not accompanied by any variation of fura-2 monitored Ca2+ levels under resting and depolarizing conditions.  相似文献   

18.
A Na+/Ca2+ exchange mechanism has been recently described in human neutrophils that constitutes the principal pathway for Ca2+ influx into resting cells. The potential role of this system in regulating the respiratory burst in response to activation by the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine was explored. In the presence of 1 mM Ca2+, a variety of di- and trivalent cations suppressed the generation of O(-2) radicals in a series of decreasing efficacy: La3+ approximately Zn2+ much greater than Sr2+ approximately Cd2+ greater than Ba2+ greater than Co2+ greater than Ni2+ approximately Mg2+. This sequence is similar to their rank order of activity in inhibiting 45Ca2+ influx via Na+/Ca2+ counter-transport. Benzamil, phenamil, and 2',4'-dichlorobenzamil, analogues of amiloride which selectively block Na+/Ca2+ exchange in neutrophils, likewise suppressed the release of O(-2) with apparent Ki values of approximately 30 microM. The effect of the cations was competitive with Ca2+, while the interaction between the benzamil derivatives and Ca2+ appeared to be noncompetitive in nature. Both the divalent cations and benzamil also inhibited the rise in cytoplasmic Ca2+ as monitored by fura-2 fluorescence: these agents reduced peak cytosolic Ca2+ levels after N-formyl-methionyl-leucyl-phenylalanine stimulation to values seen in the absence of extracellular Ca2+. These results are compatible with the hypothesis that the influx of Ca2+ via Na+/Ca2+ exchange contributes to the transient elevation in intracellular free Ca2+. The polyvalent cations block the entry of critical Ca2+ ions by competing with Ca2+ for binding to the translocation site on the exchange carrier, while benzamil acts by lowering the maximal transport rate. These studies emphasize that Na+/Ca2+ exchange through its effects on cytoplasmic Ca2+ plays a major regulatory role in activation of the respiratory burst in chemotactic factor-stimulated neutrophils.  相似文献   

19.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

20.
To determine whether lysophospholipids mobilize cellular Ca2+, intact rat islets were prelabelled with 45Ca2+ and subjected to three maneuvers designed to simulate the physiologic accumulation of lysophospholipids: (1) exogenous provision; (2) addition of porcine pancreatic phospholipase A2; and (3) provision of p-hydroxymercuribenzoic acid, which impedes both the reacylation and hydrolysis of endogenous lysophospholipids, leading to their accumulation in islets. Each maneuver provoked 45Ca2+ efflux at concentrations nearly identical to those previously reported to induce insulin release in the absence of toxic effects on the islets. Lysophosphatidylcholine (lysoPC) and lysophosphatidylinositol were active, whereas the ethanolamine and serine derivatives, and lysophosphatidic acid, were much less effective. The effects of lysoPC were reversible; they also were reduced by lanthanum or gentamicin (which are probes of superficial, plasma membrane-bound stores of Ca2+) or by prior depletion of membrane-bound cellular Ca2+ stores using ionomycin, but not by removal of extracellular Ca2+ or Na+. The effects of lysoPC, phospholipase A2 and p-hydroxymercuribenzoic acid were largely independent of any hydrolysis to, or accumulation of, free fatty acids as assessed by resistance to dantrolene or trifluoperazine (which selectively reduce arachidonic acid-induced 45Ca2+ efflux and insulin release). Thus, lysophospholipids are a newly recognized class of lipid mediators which may promote insulin release at least in part via mobilization of a pool(s) of Ca2+ ('trigger Ca2+') bound in the plasma membrane and possibly in other cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号