首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the plasma membrane is a common mechanism utilized by all eukaryotes including mammals, yeast, and the Trypanosoma brucei parasite. We have previously shown that in mammals phenanthroline (PNT) blocks the attachment of phosphoethanolamine (P-EthN) groups to mannose residues in GPI anchor intermediates, thus preventing the synthesis of mammalian GPI anchors. Therefore, PNT is likely to inhibit GPI-phosphoethanolamine transferases (GPI-PETs). Here we report that in yeast, PNT also inhibits the synthesis of the GPI anchor as well as GPI-anchored proteins. Interestingly, the mechanism of PNT inhibition of GPI synthesis is different from that of YW3548, another putative GPI-PET inhibitor. In contrast to mammals and yeast, the synthesis of GPIs in T. brucei is not affected by PNT. Our results indicate that the T. brucei GPI-PET could be a potential target for antiparasitic drugs.  相似文献   

2.
The synthesis of the glycosylphosphatidylinositol (GPI) anchor occurs in different compartments within the ER. We have previously shown that GPI anchor intermediates including GlcNAc-PI and GlcN-(acyl)PI are present in Triton insoluble membranes (TIMs), believed to be derived from lipid rafts. The present study was initiated to determine if GPI anchor intermediates move to raft-like domains after their synthesis or if these domains represent another ER compartment for GPI anchor synthesis. We determined that in transfected cells Pig-Ap and Pig-Lp, two proteins involved in the synthesis of GlcNAc-PI and GlcN-PI, respectively, are present in TIMs. In addition, we detected GlcNAc-PI synthase, GlcNAc-PI deacetylase, and GlcN-PI acyltransferase activities in TIMs isolated from untransfected cells. These results lend support to the possibility of additional GPI biosynthetic compartments in the ER and to the notion that GPI anchor intermediates produced in and outside raft-like domains may have a different fate.  相似文献   

3.
Many eucaryotic cell surface proteins are anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI), of which the core region is highly conserved from protozoa to mammalian cells. Previous studies (Lisanti, M. P., Field, M. C., Caras, I. W., Menon, A. K., and Rodiguez-Boulan, E. (1991) EMBO J. 10, 1969-1977) showed that mannosamine blocked the expression of a recombinant GPI-anchored protein in Madin-Darby canine kidney cells and converted this protein to an unpolarized secretory product. In the present study, we examined the effect of mannosamine on the formation of the glycan portion of the GPI anchor precursors. This amino sugar inhibited the incorporation of mannose into the glycan portion, and the inhibition was dose-dependent. Mannosamine was shown to be incorporated into the glycan as mannosamine, probably mostly in the second mannose position and thereby to block the further addition of mannose and other anchor components. The products formed in the presence of this drug were characterized by gel filtration and high resolution TLC both before and after deamination with nitrous acid and dephosphorylation by HF. Galactosamine and trehalosamine were inactive in this system, whereas glucosamine also inhibited mannose incorporation into GPI intermediates.  相似文献   

4.
Paulick MG  Bertozzi CR 《Biochemistry》2008,47(27):6991-7000
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.  相似文献   

5.
The glycosylphosphatidylinositol (GPI) anchor, potentially capable of generating a number of second messengers, such as diacylglycerol, phosphatidic acid, and inositol phosphate glycan, has been postulated to be involved in signal transduction in various cell types, including T-cells. We have identified a panel of T-cell hybridoma mutants that are defective at various steps of GPI anchor biosynthesis. Since they were derived from a functional T-T hybridoma, we were able to determine the precise role of the GPI anchor in T-cell activation. Two mutants were chosen for this analysis. The first mutant is defective at the first step of GPI anchor biosynthesis, i.e. in the transfer of N-acetylglucosamine to a phosphatidylinositol acceptor. Thus, it cannot form any GPI precursors or GPI-like compounds. Interestingly, this mutant can be activated by antigen, superantigen, and concanavalin A in a manner comparable to the wild-type hybridoma. These data strongly suggest that the GPI anchor, its precursor, or its potential cleavage product, inositol phosphate glycan, is not required for the early phase of T-cell activation. The second mutant is able to synthesize the first two GPI precursors, but is not able to add mannose residues to them due to a deficiency in dolichol-phosphate-mannose (Dol-P-Man) biosynthesis. Unexpectedly, all of the Dol-P-Man mutants are defective in activation by antigen, suprantigen, and concanavalin A despite normal T-cell receptor expression. Here, we show that the activation defect was due to a pleiotropic glycosylation abnormality because Dol-P-Man is required for both GPI anchor and N-linked oligosaccharide biosynthesis. When the yeast Dol-P-Man synthase gene was stably transfected into the mutants, full expression of surface GPI-anchored proteins was restored. However, N-linked glycosylation was either partially or completely corrected in different transfectants. Reconstitution of activation defects correlates well with the status of N-linked glycosylation, but not with the expression of GPI-anchored proteins. These results thus reveal an unexpected role of N-linked glycosylation in T-cell activation.  相似文献   

6.
The 1G7-antigen is expressed by the infective metacyclic trypomastigote stage of the protozoan parasite Trypanosoma cruzi. The 1G7-antigen is a 90-kDa glycoprotein, present at about 40,000 copies/cell, which is anchored in the plasma membrane via a glycosylphosphatidylinositol (GPI) membrane anchor. The glycan of the GPI anchor has been isolated from immunopurified 1G7-antigen and its structure determined using a combination of methylation linkage analysis and exoglycosidase sequencing. The structure of the glycan is Man alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH2. The glucosamine residue is in glycosidic linkage to a phosphatidylinositol moiety. The penultimate nonreducing alpha-Man residue is substituted with phosphate, which is most likely part of an ethanolamine phosphate bridge linking the GPI anchor to the 1G7-antigen polypeptide. The glycan sequence was obtained from 1.1 nmol of glycoprotein isolated from a detergent lysate of whole cells. The procedures reported here represent a high sensitivity protocol for determining GPI glycan structures from small quantities of biological material. The structure of the 1G7-antigen GPI anchor is consistent with the conserved core structure of all GPI anchors analyzed to date and is similar to that of the T. cruzi lipopeptidophosphoglycan. The biosynthesis of GPI anchors and lipopeptidophosphoglycan in T. cruzi is discussed in the light of this structural homology.  相似文献   

7.
The glycosylphosphatidylinositol (GPI) anchor is a lipid and glycan modification added to the C terminus of certain proteins in the endoplasmic reticulum by the activity of a multiple subunit enzyme complex known as the GPI transamidase (GPIT). Several subunits of GPIT have increased expression levels in breast carcinoma. In an effort to identify GPI-anchored proteins and understand the possible role of these proteins in breast cancer progression, we employed a combination of strategies. First, alpha toxin from Clostridium septicum was used to capture GPI-anchored proteins from human breast cancer tissues, cells, and serum for proteomic analysis. We also expressed short interfering RNAs targeting the expression of the GPAA1 and PIGT subunits of GPIT in breast cancer cell lines to identify proteins in which membrane localization is dependent on GPI anchor addition. Comparative membrane proteomics using nano-ESI-RPLC-MS/MS led to the discovery of several new potential diagnostic and therapeutic targets for breast cancer. Furthermore, we provide evidence that increased levels of GPI anchor addition in malignant breast epithelial cells promotes the dedifferentiation of malignant breast epithelial cells in part by increasing the levels of cell surface markers associated with mesenchymal stem cells.  相似文献   

8.
Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p's lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4-174) harbors a single amino acid change in motif 2. The mcd4-174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4-174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4-174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.  相似文献   

9.
Alkaline phosphatase is anchored to the membrane via glycosylphosphatidylinositol (GPI). Mannose residues of the GPI glycan are suggested to be derived from dolichol-P-mannose. In the present study we examined the effect of 2-fluoro-2-deoxy-D-glucose (F-Glc), an inhibitor of dolichol-P-mannose synthesis, on the biosynthesis and processing of alkaline phosphatase in JEG-3 cells. In control cells, a proform precursor (64.5 kDa) with a hydrophobic peptide domain at the COOH terminus was immediately processed into an intermediate form (63 kDa) by proteolytic removal of the COOH-terminal extension and replacement with the GPI anchor, and then to a mature form (66 kDa) by terminal glycosylation of its N-linked oligosaccharides. In contrast, when cells were treated with F-Glc (1 mM), the protein was synthesized as a proform of 61 kDa. The reduction in its molecular mass was mostly due to the inhibition in maturation of N-linked oligosaccharides by F-Glc. The 61-kDa proform identified by antibodies to the COOH-terminal peptide was detectable even at 3 h after the synthesis, and was gradually processed to doublet forms of 58-59 kDa which were finally secreted into the medium. None of these forms were labeled with [3H]ethanolamine and [3H]stearic acid, components of the GPI anchor, and expressed on the cell surface as a membrane-bound form. Taken together, these results suggest that the inhibition of the GPI synthesis causes a prolonged accumulation of the proform, which is then gradually processed into secretory forms by proteolytic removal of the COOH-terminal hydrophobic peptide.  相似文献   

10.
A large number of mammalian proteins are anchored to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. Biosynthetic intermediates of the GPI anchor have been identified in mammalian cells. The early GPI precursors are sensitive to phosphatidylinositol (PI)-specific phospholipase C (PLC). However, all of the later GPI precursors, which contain 1 or more mannose residues, are PI-PLC-resistant, suggesting that there is another unidentified precursor. Here, we report the identification of this missing link. This GPI precursor can only be labeled with glucosamine and inositol, and is resistant to PI-PLC but sensitive to GPI-phospholipase D. It accumulates in large quantity only in mutants which are defective in the addition of the first mannose residue to the elongating GPI core. Thus, fatty acylation of glucosaminylphosphatidylinositol, to render it PI-PLC-resistant, is an obligatory step in the biosynthesis of mammalian GPI anchor precursors.  相似文献   

11.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is catalyzed by GPI transamidase (GPIT), a multisubunit, endoplasmic reticulum (ER)-localized enzyme. GPIT recognizes ER-translocated proteins that have a GPI-directing C-terminal signal sequence and replaces this sequence with a preassembled GPI anchor. Although the GPI signal sequence has been extensively characterized, little is known about the structural features of the GPI lipid substrate that enable its recognition by GPIT. In a previous study we showed that mature GPIs could be co-immunoprecipitated with GPIT complexes containing functional subunits (Vainauskas, S., and Menon, A. K. (2004) J. Biol. Chem. 279, 6540-6545). We now use this approach, as well as a method that reconstitutes the interaction between GPIs and GPIT, to define the basis of the interaction between GPI and human GPIT. We report that (i) human GPIT can interact with GPI biosynthetic intermediates, not just mature GPIs competent for transfer to protein, (ii) the ethanolamine phosphate group on the third mannose residue of the GPI glycan is not critical for GPI recognition by GPIT, (iii) the ethanolamine phosphate residue linked to the first mannose of the GPI structure is a major feature of GPIs that is recognized by human GPIT, and (iv) the simplest GPI recognized by human GPIT is EtN-P-2Manalpha1-4GlcN-(acyl)-phosphatidyl-inositol. These studies define the molecular characteristics of GPI that are recognized by GPIT and open the way to identifying GPIT subunits that are involved in this process.  相似文献   

12.
The average solution conformation of the glycosylphosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein (VSG) has been determined by using a combination of two-dimensional 1H-1H NMR methods together with molecular orbital calculations and restrained molecular dynamics simulations. This allows the generation of a model to describe the orientation of the glycan with respect to the membrane. This shows that the glycan exists in an extended configuration along the plane of the membrane and spans an area of 600 A2, which is similar to the cross-sectional area of a monomeric N-terminal VSG domain. Taken together, these observations suggest a possible space-filling role for the GPI anchor that may maintain the integrity of the VSG coat. The potential importance of the GPI glycan as a chemotherapeutic target is discussed in light of these observations.  相似文献   

13.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been identified in all eukaryotes. In fungi, structural and biosynthetic studies of GPIs have been restricted to the yeast Saccharomyces cerevisiae. In this article, four GPI-anchored proteins were purified from a membrane preparation of the human filamentous fungal pathogen Aspergillus fumigatus. Using new methodology applied to western blot protein bands, the GPI structures were characterized by ES-MS, fluorescence labeling, HPLC, and specific enzymatic digestions. The phosphatidylinositol moiety of the A. fumigatus GPI membrane anchors was shown to be an inositol-phosphoceramide containing mainly phytosphingosine and monohydroxylated C24:0 fatty acid. In constrast to yeast, only ceramide was found in the GPI anchor structures of A. fumigatus, even for Gel1p, a homolog of Gas1p in S. cerevisiae that contains diacylglycerol. The A. fumigatus GPI glycan moiety is mainly a linear pentomannose structure linked to a glucosamine residue: Manalpha1-3Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN.  相似文献   

14.
Four major glycolipids were extracted from Toxoplasma gondii tachyzoites which were metabolically labeled with tritiated glucosamine, mannose, palmitic and myristic acid, ethanolamine, and inositol. Judging from their sensitivity to a set of enzymatic and chemical tests, these glycolipids share the following properties with the glycolipid moiety of the glycosylphosphatidylinositol anchor (GPI anchor) of the major surface protein, P30, of T. gondii: 1) a nonacetylated glucosamine-inositol phosphate linkage; 2) sensitivity toward phosphatidylinositol-specific phospholipase C and nitrous acid; 3) identity of HF-dephosphorylated GPI glycan backbone between three glycolipids and the HF-dephosphorylated core glycan of the GPI anchor of the major surface protein P30; 4) the presence of a linear core glycan structure blocked by an ethanolamine phosphate residue(s). Taken together with the nature of radiolabeled precursors incorporated into these glycolipids, the data indicate that these GPIs are involved in the biosynthesis of the GPI-membrane anchors of T. gondii.  相似文献   

15.
The addition of glycosylphosphatidylinositol (GPI) anchors to proteins occurs by a transamidase-catalyzed reaction mechanism soon after completion of polypeptide synthesis and translocation. We show that placental alkaline phosphatase becomes efficiently GPI-anchored when translated in the presence of semipermeabilized K562 cells but is not GPI-anchored in cell lines defective in the transamidase subunit hGpi8p. By studying the synthesis of placental alkaline phosphatase, we demonstrate that folding of the protein is not influenced by the addition of a GPI anchor and conversely that GPI anchor addition does not require protein folding. These results demonstrate that folding of the ectodomain and GPI addition are two distinct processes and can be mutually exclusive. When GPI addition is prevented, either by synthesis of the protein in the presence of cell lines defective in GPI addition or by mutation of the GPI carboxyl-terminal signal sequence cleavage site, the substrate forms a prolonged association with the transamidase subunit hGpi8p. The ability of the transamidase to recognize and associate with GPI anchor signal sequences provides an explanation for the retention of GPI-anchored protein within the ER in the absence of GPI anchor addition.  相似文献   

16.
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.

The inositol deacylase AtPGAP1 mediates the first step of glycosylphosphatidylinositol (GPI) anchor-lipid remodeling and is required for efficient transport of GPI-anchored proteins  相似文献   

17.
Glycosylphosphatidylinositol (GPI) anchor biosynthesis takes place in the endoplasmic reticulum (ER). After protein attachment, the GPI anchor is transported to the Golgi where it undergoes fatty acid remodeling. The ER exit of GPI-anchored proteins is controlled by glycan remodeling and p24 complexes act as cargo receptors for GPI anchor sorting into COPII vesicles. In this study, we have characterized the lipid profile of mammalian cell lines that have a defect in GPI anchor biosynthesis. Depending on which step of GPI anchor biosynthesis the cells were defective, we observed sphingolipid changes predominantly for very long chain monoglycosylated ceramides (HexCer). We found that the structure of the GPI anchor plays an important role in the control of HexCer levels. GPI anchor-deficient cells that generate short truncated GPI anchor intermediates showed a decrease in very long chain HexCer levels. Cells that synthesize GPI anchors but have a defect in GPI anchor remodeling in the ER have a general increase in HexCer levels. GPI-transamidase-deficient cells that produce no GPI-anchored proteins but generate complete free GPI anchors had unchanged levels of HexCer. In contrast, sphingomyelin levels were mostly unaffected. We therefore propose a model in which the transport of very long chain ceramide from the ER to Golgi is regulated by the transport of GPI anchor molecules.  相似文献   

18.
Mutations at five loci named PEANUT1-5 (PNT) were identified in a genetic screen for radially swollen embryo mutants. pnt1 cell walls showed decreased crystalline cellulose, increased pectins, and irregular and ectopic deposition of pectins, xyloglucans, and callose. Furthermore, pnt1 pollen is less viable than the wild type, and pnt1 embryos were delayed in morphogenesis and showed defects in shoot and root meristems. The PNT1 gene encodes the Arabidopsis thaliana homolog of mammalian PIG-M, an endoplasmic reticulum-localized mannosyltransferase that is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor. All five pnt mutants showed strongly reduced accumulation of GPI-anchored proteins, suggesting that they all have defects in GPI anchor synthesis. Although the mutants are seedling lethal, pnt1 cells are able to proliferate for a limited time as undifferentiated callus and do not show the massive deposition of ectopic cell wall material seen in pnt1 embryos. The different phenotype of pnt1 cells in embryos and callus suggest a differential requirement for GPI-anchored proteins in cell wall synthesis in these two tissues and points to the importance of GPI anchoring in coordinated multicellular growth.  相似文献   

19.
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.  相似文献   

20.
Thy-1 is a cell surface glycoprotein containing three N-linked glycosylation sites and a glycosylphosphatidylinositol (GPI) anchor. The effect of the anchor on its N-linked glyco-sylation was investigated by comparing the glycosylation of soluble recombinant Thy-1 (sThy-1) with that of recombinant GPI anchored Thy-1, both expressed in Chinese hamster ovary cells. The sThy-1 was produced in a variety of isoforms including some which lacked carbohydrate on all three sequons whereas the GPI anchored form appeared fully glycosylated like native Thy-1. This was surprising as the attachment of N-linked sugars occurs cotranslationally and it was not expected that the presence of a C-terminal GPI anchor signal sequence would affect sequon occupancy. Furthermore sThy-1 lacking glycosylation could be produced with the inhibitor tunicamycin but in contrast cell surface expression of unglycosylated GPI anchored Thy-1 could not be obtained. The GPI anchored form appeared less processed with almost 4-fold more oligo-mannose oligosaccharides than in sThy-1 and also with less sialylated and core fucosylated biantennary glycans. Possible mechanisms whereby the anchor or the anchor signal sequence, control site occupancy and maturation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号