首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3' end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3'-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3' hydroxyl of U6 snRNA to a 3' phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies.  相似文献   

2.
A E Mayes  L Verdone  P Legrain    J D Beggs 《The EMBO journal》1999,18(15):4321-4331
Seven Sm proteins associate with U1, U2, U4 and U5 spliceosomal snRNAs and influence snRNP biogenesis. Here we describe a novel set of Sm-like (Lsm) proteins in Saccharomyces cerevisiae that interact with each other and with U6 snRNA. Seven Lsm proteins co-immunoprecipitate with the previously characterized Lsm4p (Uss1p) and interact with each other in two-hybrid analyses. Free U6 and U4/U6 duplexed RNAs co-immunoprecipitate with seven of the Lsm proteins that are essential for the stable accumulation of U6 snRNA. Analyses of U4/U6 di-snRNPs and U4/U6.U5 tri-snRNPs in Lsm-depleted strains suggest that Lsm proteins may play a role in facilitating conformational rearrangements of the U6 snRNP in the association-dissociation cycle of spliceosome complexes. Thus, Lsm proteins form a complex that differs from the canonical Sm complex in its RNA association(s) and function. We discuss the possible existence and functions of alternative Lsm complexes, including the likelihood that they are involved in processes other than pre-mRNA splicing.  相似文献   

3.
Characterization of U6 snRNA-protein interactions   总被引:17,自引:10,他引:7       下载免费PDF全文
Through a combination of in vitro snRNP reconstitution, photocross-linking and immunoprecipitation techniques, we have investigated the interaction of proteins with the spliceosomal U6 snRNA in U6 snRNPs, U4/U6 di-snRNPs and U4/U6.U5 tri-snRNPs. Of the seven Lsm (Sm-like) proteins that associate specifically with this spliceosomal snRNA, three were shown to contact the RNA directly, and to maintain contact as the U6 RNA is incorporated into tri-snRNPs. In tri-snRNPs, the U5 snRNP protein Prp8 contacts position 54 of U6, which is in the conserved region that contributes to the formation of the catalytic core of the spliceosome. Other tri-snRNP-specific contacts were also detected, indicating the dynamic nature of protein interactions with this important snRNA. The uridine-rich extreme 3' end of U6 RNA was shown to be essential but not sufficient for the association of the Lsm proteins. Interestingly, the Lsm proteins associate efficiently with the 3' half of U6, which contains the 3' stem-loop and uridine-rich 3' end, suggesting that the Lsm and Sm proteins may recognize similar features in RNAs.  相似文献   

4.
Pannone BK  Kim SD  Noe DA  Wolin SL 《Genetics》2001,158(1):187-196
The U6 small nuclear ribonucleoprotein is a critical component of the eukaryotic spliceosome. The first protein that binds the U6 snRNA is the La protein, an abundant phosphoprotein that binds the 3' end of many nascent small RNAs. A complex of seven Sm-like proteins, Lsm2-Lsm8, also binds the 3' end of U6 snRNA. A mutation within the Sm motif of Lsm8p causes Saccharomyces cerevisiae cells to require the La protein Lhp1p to stabilize nascent U6 snRNA. Here we describe functional interactions between Lhp1p, the Lsm proteins, and U6 snRNA. LSM2 and LSM4, but not other LSM genes, act as allele-specific, low-copy suppressors of mutations in Lsm8p. Overexpression of LSM2 in the lsm8 mutant strain increases the levels of both Lsm8p and U6 snRNPs. In the presence of extra U6 snRNA genes, LSM8 becomes dispensable for growth, suggesting that the only essential function of LSM8 is in U6 RNA biogenesis or function. Furthermore, deletions of LSM5, LSM6, or LSM7 cause LHP1 to become required for growth. Our experiments are consistent with a model in which Lsm2p and Lsm4p contact Lsm8p in the Lsm2-Lsm8 ring and suggest that Lhp1p acts redundantly with the entire Lsm2-Lsm8 complex to stabilize nascent U6 snRNA.  相似文献   

5.
6.
Assembly and intracellular transport of snRNP particles.   总被引:7,自引:0,他引:7  
The assembly of the major small nuclear ribonucleoprotein (snRNP) particles begins in the cytoplasm where large pools of common core proteins are preassembled in several RNA-free intermediate particles. Newly synthesized snRNAs transiently enter the cytoplasm and complex with core particles to form pre-snRNP particles. Subsequently, the cap structure at the 5' end of the snRNA is hypermethylated. The resulting trimethylguanosine (TMG) cap is an integral part of the nuclear localization signal for snRNP particles and the pre-snRNP particles are rapidly transported into the nucleus. SnRNP particles mature when snRNA-specific proteins complex with the particles, in some cases, just before or during nuclear transport, but in most instances after the particles are in the nucleus. In addition, U6 snRNA hybridizes with U4 snRNA to form a U4/U6 snRNP in the nucleus. The transport signals are retained on the snRNP particles and proteins since existing particles and proteins enter the reformed nucleus after mitosis.  相似文献   

7.
Nuclear retention of RNA as a mechanism for localization.   总被引:13,自引:0,他引:13       下载免费PDF全文
Two mutant RNAs, one derived from tRNA(imet), the second from U1 snRNA, that are defective in export from the nucleus to the cytoplasm have been studied. In both cases, the RNAs are shown to be transport competent but prevented from leaving the nucleus by interaction with saturable binding sites. This contradicts previous hypotheses to explain the behavior of the tRNA mutant, and highlights a general problem in using mutant RNAs to study nuclear export. In the case of these mutants, it is argued that nuclear retention is likely to be artifactual. However, the additional example of U6 snRNA is described. In this case, nuclear retention appears to be a physiological mechanism by which intranuclear localization is achieved. Evidence that the site of interaction with the La protein in U6 snRNA is important for its nuclear retention is presented.  相似文献   

8.
B Séraphin 《The EMBO journal》1995,14(9):2089-2098
Several small nuclear RNAs (snRNAs), including the spliceosomal U1, U2, U4 and U5 snRNAs, are associated with Sm proteins. These eight small proteins form a heteromeric complex that binds to snRNAs and plays a major role in small nuclear ribonucleoprotein (snRNP) biogenesis and transport. These proteins are also a major target for autoantibodies in the human disease systemic lupus erythematosus. By sequence comparison I have shown that all the known Sm proteins share a common structural motif which might explain their immunological cross-reactivity. Database searches using this motif uncovered a large number of Sm-like proteins from plants, animals and fungi. These proteins have been grouped in at least 13 different subfamilies. Genes encoding divergent yeast members were cloned and used to produce tagged fusion proteins. Some of these proteins are canonical Sm proteins as they associate with the yeast U1, U2, U4/U6 and U5 snRNAs. Surprisingly, one Sm-like protein was found to be a component of the U6 snRNP. These findings have implications for the structure of the Sm protein complex, spliceosomal snRNP evolution, snRNA transport and modification as well as the involvement of Sm proteins in systemic lupus erythematosus.  相似文献   

9.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.  相似文献   

10.
Spliceosomal U6 small nuclear RNA (snRNA) plays a central role in the pre-mRNA splicing mechanism and is highly conserved throughout evolution. Previously, a sequence element essential for both capping and cytoplasmic-nuclear transport of U6 snRNA was mapped in the 5'-terminal domain of U6 snRNA. We have identified a protein in cytoplasmic extracts of mammalian and Trypanosoma brucei cells that binds specifically to this U6 snRNA element. Competition studies with mutant and heterologous RNAs demonstrated the conserved binding specificity of the mammalian and trypanosomal proteins. The in vitro capping analysis of mutant U6 snRNAs indicated that protein binding is required but not sufficient for capping of U6 snRNA by a gamma-monomethyl phosphate. Through RNA affinity purification of mammalian small nuclear ribonucleoproteins (snRNPs), we detected this protein also in nuclear extract as a new specific component of the U6 snRNP but surprisingly not of the U4/U6 or the U4/U5/U6 multi-snRNP. These results suggest that the U6-specific protein is involved in U6 snRNA maturation and transport and may therefore be functionally related to the Sm proteins of the other spliceosomal snRNPs.  相似文献   

11.
U7 snRNPs were isolated from HeLa cells by biochemical fractionation, followed by affinity purification with a biotinylated oligonucleotide complementary to U7 snRNA. Purified U7 snRNPs lack the Sm proteins D1 and D2, but contain additional polypeptides of 14, 50 and 70 kDa. Microsequencing identified the 14 kDa polypeptide as a new Sm-like protein related to Sm D1 and D3. Like U7 snRNA, this protein, named Lsm10, is enriched in Cajal bodies of the cell nucleus. Its incorporation into U7 snRNPs is largely dictated by the special Sm binding site of U7 snRNA. This novel type of Sm complex, composed of both conventional Sm proteins and the Sm-like Lsm10, is most likely to be important for U7 snRNP function and subcellular localization.  相似文献   

12.
The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m7G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis.  相似文献   

13.
The U7 snRNP involved in histone RNA 3' end processing is related to but biochemically distinct from spliceosomal snRNPs. In vertebrates, the Sm core structure assembling around the noncanonical Sm-binding sequence of U7 snRNA contains only five of the seven standard Sm proteins. The missing Sm D1 and D2 subunits are replaced by U7-specific Sm-like proteins Lsm10 and Lsm11, at least the latter of which is important for histone RNA processing. So far, it was unknown if this special U7 snRNP composition is conserved in invertebrates. Here we describe several putative invertebrate Lsm10 and Lsm11 orthologs that display low but clear sequence similarity to their vertebrate counterparts. Immunoprecipitation studies in Drosophila S2 cells indicate that the Drosophila Lsm10 and Lsm11 orthologs (dLsm10 and dLsm11) associate with each other and with Sm B, but not with Sm D1 and D2. Moreover, dLsm11 associates with the recently characterized Drosophila U7 snRNA and, indirectly, with histone H3 pre-mRNA. Furthermore, dLsm10 and dLsm11 can assemble into U7 snRNPs in mammalian cells. These experiments demonstrate a strong evolutionary conservation of the unique U7 snRNP composition, despite a high degree of primary sequence divergence of its constituents. Therefore, Drosophila appears to be a suitable system for further genetic studies of the cell biology of U7 snRNPs.  相似文献   

14.
The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 participate in the splicing of pre-mRNA. U1, U2, U4 and U5 RNAs share a highly conserved sequence motif PuA(U)nGPu, termed the Sm site, which is normally flanked by two hairpin loops. The Sm site provides the major binding site for the group of common proteins, B', B, D1, D2, D3, E, F and G, which are shared by the spliceosomal snRNPs. We have investigated the ability of common snRNP proteins to recognize the Sm site of snRNA by using ultraviolet light-induced RNA-protein cross-linking within U1 snRNP particles. The U1 snRNP particles, reconstituted in vitro, contained U1 snRNA labelled with 32P. Cross-linking of protein to this U1 snRNA occurred only in the presence of the single-stranded stretch of snRNA that makes up the conserved Sm site. Characterization of the cross-linked protein by one and two-dimensional gel electrophoresis indicated that snRNP protein G had become cross-linked to the U1 snRNA. This was confirmed by specific immunoprecipitation of the cross-linked RNA-protein complex with an anti-G antiserum. The cross-link was located on the U1 snRNA by fingerprint analysis with RNases T1 and A; this demonstrated that the protein G has been cross-linked to the AAU stretch within the 5'-terminal half of the Sm site (AAUUUGUGG). These results suggest that the snRNP protein G may be involved in the direct recognition of the Sm site.  相似文献   

15.
16.
A Sm-like protein complex that participates in mRNA degradation   总被引:22,自引:0,他引:22  
In eukaryotes, seven Sm proteins bind to the U1, U2, U4 and U5 spliceosomal snRNAs while seven Smlike proteins (Lsm2p-Lsm8p) are associated with U6 snRNA. Another yeast Sm-like protein, Lsm1p, does not interact with U6 snRNA. Surprisingly, using the tandem affinity purification (TAP) method, we identified Lsm1p among the subunits associated with Lsm3p. Coprecipitation experiments demonstrated that Lsm1p, together with Lsm2p-Lsm7p, forms a new seven-subunit complex. We purified the two related Sm-like protein complexes and identified the proteins recovered in the purified preparations by mass spectrometry. This confirmed the association of the Lsm2p-Lsm8p complex with U6 snRNA. In contrast, the Lsm1p-Lsm7p complex is associated with Pat1p and Xrn1p exoribonuclease, suggesting a role in mRNA degradation. Deletions of LSM1, 6, 7 and PAT1 genes increased the half-life of reporter mRNAs. Interestingly, accumulating mRNAs were capped, suggesting a block in mRNA decay at the decapping step. These results indicate the involvement of a new conserved Sm-like protein complex and a new factor, Pat1p, in mRNA degradation and suggest a physical connection between decapping and exonuclease trimming.  相似文献   

17.
18.
The 25S [U4/U6.U5] tri-snRNP (small nuclear ribonucleoprotein) is a central unit of the nuclear pre-mRNA splicing machinery. The U4, U5 and U6 snRNAs undergo numerous rearrangements in the spliceosome, and knowledge of all of the tri-snRNP proteins is crucial to the detailed investigation of the RNA dynamics during the spliceosomal cycle. Here we characterize by mass spectrometric methods the proteins of the purified [U4/U6.U5] tri-snRNP from the yeast Saccharomyces cerevisiae. In addition to the known tri-snRNP proteins (only one, Lsm3p, eluded detection), we identified eight previously uncharacterized proteins. These include four Sm-like proteins (Lsm2p, Lsm5p, Lsm6p and Lsm7p) and four specific proteins named Snu13p, Dib1p, Snu23p and Snu66p. Snu13p comprises a putative RNA-binding domain. Interestingly, the Schizosaccharomyces pombe orthologue of Dib1p, Dim1p, was previously assigned a role in cell cycle progression. The role of Snu23p, Snu66p and, additionally, Spp381p in pre-mRNA splicing was investigated in vitro and/or in vivo. Finally, we show that both tri-snRNPs and the U2 snRNP are co-precipitated with protein A-tagged versions of Snu23p, Snu66p and Spp381p from extracts fractionated by glycerol gradient centrifugation. This suggests that these proteins, at least in part, are also present in a [U2.U4/U6.U5] tetra-snRNP complex.  相似文献   

19.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  相似文献   

20.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号