首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gender differences in vascular reactivity have been suggested; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the gender differences in vascular reactivity reflect gender-related, possibly estrogen-mediated, distinctions in the expression and activity of specific protein kinase C (PKC) isoforms in vascular smooth muscle. Aortic strips were isolated from intact and gonadectomized male and female Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Isometric contraction was measured in endothelium-denuded aortic strips. PKC activity was measured in the cytosolic and particulate fractions, and the amount of PKC was measured using Western blots and isoform-specific anti-PKC antibodies. In intact male WKY rats, phenylephrine (Phe, 10(-5) M) and phorbol 12,13-dibutyrate (PDBu, 10(-6) M) stimulated contraction to 0.37 +/- 0.02 and 0.42 +/- 0.02 g/mg tissue wt, respectively. The basal particulate/cytosolic PKC activity ratio was 0.86 +/- 0.06, and Western blots revealed alpha-, delta-, and zeta-PKC isoforms. Phe and PDBu increased PKC activity and caused significant translocation of alpha- and delta-PKC from the cytosolic to particulate fraction. In intact female WKY rats, basal PKC activity, the amount of alpha-, delta-, and zeta-PKC, the Phe- and PDBu-induced contraction, and PKC activity and translocation of alpha- and delta-PKC were significantly reduced compared with intact male WKY rats. The basal PKC activity, the amount of alpha-, delta-, and zeta-PKC, the Phe and PDBu contraction, and PKC activity and alpha- and delta-PKC translocation were greater in SHR than WKY rats. The reduction in Phe and PDBu contraction and PKC activity in intact females compared with intact males was greater in SHR ( approximately 30%) than WKY rats ( approximately 20%). Phe and PDBu contraction and PKC activity were not significantly different between castrated males and intact males but were greater in ovariectomized (OVX) females than intact females. Treatment of OVX females or castrated males with 17 beta-estradiol, but not 17 alpha-estradiol, subcutaneous implants caused significant reduction in Phe and PDBu contraction and PKC activity that was greater in SHR than WKY rats. Phe and PDBu contraction and PKC activity in OVX females or castrated males treated with 17 beta-estradiol plus the estrogen receptor antagonist ICI-182,780 were not significantly different from untreated OVX females or castrated males. Thus a gender-related reduction in vascular smooth muscle contraction in female WKY rats with intact gonads compared with males is associated with reduction in the expression and activity of vascular alpha-, delta-, and zeta-PKC. The gender differences in vascular smooth muscle contraction and PKC activity are augmented in the SHR and are possibly mediated by estrogen.  相似文献   

2.
The contraction responses of mesenteric artery from 10 week old spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto controls (WKYs) to phorbol 12, 13 - dibutyrate (PDBu) and agents acting on the potential-operated calcium channels were compared. The vessels from the SHR were significantly more sensitive to PDBu than those from the WKY. The PDBu-induced contractions were inhibited by nifedipine. The vessels from the SHR were also more sensitive to Bay K 8644 and KCl than the WKY. Low concentrations of PDBu (1 nM) potentiated the KCl contraction significantly more in the SHR than the WKY. It is suggested that the increased reactivity to PDBu in the SHR may in part be related to changes in the activity of the potential-operated calcium channels.  相似文献   

3.
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.  相似文献   

4.
The stroke-prone spontaneously hypertensive rat (SHRSP) is known to have exaggerated sympathetic nerve activity to various types of stress, which might contribute to the pathogenesis of severe hypertension and stroke observed in this strain. Previously, by using a congenic strain (called SPwch1.72) constructed between SHRSP and the normotensive Wistar-Kyoto rat (WKY), we showed that a 1.8-Mbp fragment on chromosome 1 (Chr1) of SHRSP harbored the responsible gene(s) for the exaggerated sympathetic response to stress. To further narrow down the candidate region, in this study, another congenic strain (SPwch1.71) harboring a smaller fragment on Chr1 including two functional candidate genes, Phox2a and Ship2, was generated. Sympathetic response to cold and restraint stress was compared among SHRSP, SPwch1.71, SPwch1.72 and WKY by three different methods (urinary norepinephrine excretion, blood pressure measurement by the telemetry system and the power spectral analysis on heart rate variability). The results indicated that the response in SPwch1.71 did not significantly differ from that in SHRSP, excluding Phox2a and Ship2 from the candidate genes. As the stress response in SPwch1.72 was significantly less than that in SHRSP, it was concluded that the 1.2-Mbp congenic region covered by SPwch1.72 (and not by SPwch1.71) was responsible for the sympathetic stress response. The sequence analysis of 12 potential candidate genes in this region in WKY/Izm and SHRSP/Izm identified a nonsense mutation in the stromal interaction molecule 1 (Stim1) gene of SHRSP/Izm which was shared among 4 substrains of SHRSP. A western blot analysis confirmed a truncated form of STIM1 in SHRSP/Izm. In addition, the analysis revealed that the protein level of STIM1 in the brainstem of SHRSP/Izm was significantly lower when compared with WKY/Izm. Our results suggested that Stim1 is a strong candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP.  相似文献   

5.
The atrial contents and concentrations, and the plasma concentrations of atrial natriuretic polypeptide (ANP) in spontaneously hypertensive rats (SHR) and SHR stroke-prone (SHRSP) were measured and compared with those of age-matched Wistar Kyoto rats (WKY) using a specific radioimmunoassay (RIA) for alpha-rat ANP (alpha-rANP). The contents of alpha-rANP-LI in the atria of SHR (19.0 +/- 0.9 micrograms, mean +/- SEM) and SHRSP (19.3 +/- 0.6 micrograms) were significantly lower than that of WKY (22.8 +/- 1.4 micrograms) (p less than 0.05). The atrial concentration of alpha-rANP-LI was also significantly lower in SHR (248.2 +/- 11.3 ng/mg, p less than 0.05) and tended to be lower in SHRSP (272.2 +/- 12.4 ng/mg) than that of WKY (300.0 +/- 14.2 ng/mg). Furthermore, the concentrations in the left auricles of SHR and SHRSP were significantly lower than that of WKY (p less than 0.01 and p less than 0.05, respectively). In contrast, no significant difference was observed in the alpha-rANP-LI concentrations in the right auricles of WKY, SHR and SHRSP. Gel filtration studies coupled with RIA showed that gel filtration profiles of the extracts from the right and left auricles of WKY, SHR and SHRSP were essentially identical. The plasma alpha-rANP-LI levels in SHR (260 +/- 34 pg/ml) and SHRSP (319 +/- 19 pg/ml) were significantly higher than that in WKY (170 +/- 17 pg/ml) (p less than 0.05 and p less than 0.01, respectively). These results suggest that the secretion of ANP from the heart is increased in SHR and SHRSP compared with WKY.  相似文献   

6.
The molecular states of collagen in the aortas of age-matched stroke-prone spontaneously hypertensive (SHRSP) and normotensive Wistar Kyoto rats (WKY) were studied by analyzing its extractability under defined conditions. The monomeric and oligomeric collagen extractable with 0.5 M acetic acid/6 M urea from aortic homogenates of 9-month-old SHRSP and WKY comprised approx. 0.6 and 2.0%, respectively, of the total collagen. On incubation of the acetic acid/urea-extracted residues with pepsin at 4 degrees C, the levels of the collagen alpha 1(I) and alpha 2(I) chains solubilized from the SHRSP residues were both less than 50% of those from the WKY residues. When the residues were incubated with pepsin at 15 or 25 degrees C, the differences became smaller. When the acetic acid/urea residues were hydrolyzed with cyanogen bromide, nearly identical peptide maps were obtained for SHRSP and WKY. The aortas from 2-month-old SHRSP and WKY contained much larger proportions of acid/urea-extractable collagen than those of the older rats (8.2 and 13% of the respective total collagen). The levels of the alpha 1(I) and alpha 2(I) chains solubilizable from the respective residues by pepsin at 4 degrees C were similar to each other. These results indicate that aortic collagen fibrils in SHRSP are stiffened more prominently than those in WKY.  相似文献   

7.
K Umegaki  K Nakamura  T Tomita 《Blut》1986,52(1):17-27
The thrombin-induced secretion of [14C]-serotonin and adenine nucleotides from stroke-prone spontaneously hypertensive rats (SHRSP) platelets was markedly reduced with the development of hypertension accompanying hypo-aggregability compared with that from age-matched Wistar Kyoto rats (WKY) platelets. Calcium Ionophore A23187-induced secretion and aggregation were also attenuated in SHRSP platelets. Additionally, an enhancement of platelet secretion as well as aggregation by extracellular Ca2+ was less in SHRSP platelets than in WKY platelets. The platelet contents of adenine nucleotides and serotonin were not different between SHRSP and WKY at 5-16 weeks of age whereas they became significantly lower in SHRSP beginning at 22 weeks. The serotonin content in SHRSP platelets at 36 weeks of age was only 55% of that in WKY platelets. It is suggested that the reduced platelet aggregation and secretion observed in SHRSP platelets at ages lower than approximately 20 weeks are not secondary phenomena to the circulation of degranulated platelets, but the primary defect of SHRSP platelets appears to be an impaired function of Ca2+.  相似文献   

8.
Angiotensin(Ang) contents in the adrenal gland of stroke-prone spontaneously hypertensive rats(SHRSP) and age-matched Wistar Kyoto rats(WKY) were determined using reverse phase high performance liquid chromatography combined with a specific radioimmunoassay. In normotensive 5 wk-old SHRSP, the adrenal renin activity was about 3 times higher than that of age-matched WKY while the adrenal Ang I and Ang II concentrations did not differ from those of WKY. In the severely hypertensive 25 wk-old SHRSP, the adrenal Ang II and Ang I, and plasma aldosterone concentrations were about 5-fold, 2-fold and 4-fold, respectively, increased compared with levels in the WKY. In the 25 wk-old SHRSP 24 h after bilateral nephrectomy, the adrenal Ang II and plasma aldosterone levels were not decreased and were 10 and 3 times, respectively, higher than those of nephrectomized control WKY. Thus, the enhanced local generation of Ang II in the adrenal gland may contribute to the increased release of aldosterone in SHRSP with malignant hypertension.  相似文献   

9.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

10.
Stroke-prone spontaneously hypertensive rats (SHRSP) induce spontaneous osteoporosis. To elucidate the specific characteristics of bone metabolism, the SHRSP was compared with age matched Wistar-Kyoto (WKY) rats. We investigated the effects of prolonged swimming exercise training on bone mineral density (BMD) and metabolism in the SHRSP. Seven-week-old male SHRSP and WKY were divided into three groups; the sedentary control WKY group (n = 6, WKY), the sedentary control SHRSP group (n = 6, SP) and the swimming exercise training SHRSP group (n = 6, SWIM) (in pool with 60 min./day, 5 days/week for 12 weeks). The femoral BMD, bone mineral content (BMC), strength, Ca and P contents (%) of SHRSP were approximately 17, 27, 25, 20 and 9%, respectively, lower than that of WKY (p < 0.001). Serum alkaline phosphatase (AlP) had not changed between both of SP and WKY, but tartrate-resistant acid phosphatase (TrAcP) of SP approximately 3-fold higher than that of WKY (p < 0.05). Both serum calcium (Ca) and intact parathyroid hormone (i-PTH) were similar between SP and WKY. However, serum phosphate (P) of SP was approximately 18% lower than that of WKY (N.S.). These results suggested that SHRSP induces osteopenia by the bone turnover of the promoted osteoclast activity with disturbed phosphate homeostasis. On the other hand, the femoral BMD and strength were approximately 7% and 20%, respectively, decreased in the SWIM (p < 0.001), and femoral bone Ca and P contents (%) were also approximately 11% and 14%, respectively, lower than that of SP (p < 0.001). There were no significant difference between SWIM and SP on serum Ca, but serum P of SWIM was significantly lower than that of SP (p < 0.05). These results suggested that the prolonged swimming exercise training in the SHRSP induces more cruelly hypophosphatemia, and leading to osteopenia eventually. We conclude that SHRSP induces osteopenia with disturbance of phosphate homeostasis, and the prolonged swimming exercise in the SHRSP might deteriorate hypophosphatemia and osteopenia.  相似文献   

11.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

12.
Stroke-prone spontaneously hypertensive rats (SHRSP/Izm) develop severe hypertension, and more than 95% of them die of cerebral stroke. We showed the vulnerability of neuronal cells of SHRSP/Izm rats. Furthermore, we analyzed the characteristics of SHRSP/Izm astrocytes during a stroke. It is known that the proliferating ability of SHRSP/Izm astrocytes is significantly enhanced compared with those in the normotensive Wistar Kyoto rats (WKY/Izm) strain. Conversely, the ability of SHRSP/Izm astrocytes to form tight junctions (TJ) was attenuated compared with astrocytes from WKY/Izm rats. During the stress of hypoxia and reoxygenation (H/R), lactate production, an energy source for neuronal cells, decreased in SHRSP/Izm astrocytes in comparison with the WKY/Izm strain. Moreover, during H/R, SHRSP/Izm astrocytes decreased their production of glial cell line-derived neurotrophic factor (GDNF) in comparison with WKY/Izm astrocytes. Furthermore, SHRSP/Izm rats decreased production of l-serine, compared with WKY/Izm rats following nitric oxide (NO) stimulation. Additionally, in H/R, astrocytes of SHRSP/Izm rats expressed adhesion molecules such as VCAM-1 at higher levels.It is possible that all of these differences between SHRSP/Izm and WKY/Izm astrocytes are not associated with the neurological disorders in SHRSP/Izm. However, attenuated production of lactate and reduced GDNF production in astrocytes may reduce required energy levels and weaken the nutritional status of SHRSP/Ism neuronal cells. We suggest that the attenuation of astrocytes’ functions accelerates neuronal cell death during stroke, and may contribute to the development of strokes in SHRSP/Izm. In this review, we summarize the altered properties of SHRSP/Izm astrocytes during a stroke.  相似文献   

13.
The distribution of fluorescent adrenergic nerve fibers in the proximal portion (horizontal segment, Hs) and the three distal portions (major branches) of the middle cerebral arteries (MCA) was examined in stroke-prone spontaneously hypertensive rats (SHRSP) aged 10, 30, 60, 90, and 180 days, by the glyoxylic acid method. The results were compared with those in age-matched normotensive Wistar Kyoto (WKY) rats. While the distribution pattern of fluorescent nerve fibers in the proximal portion of WKY rats changed from a straight linear arrangement at 10 and 30 days of age to a network-like arrangement after 60 days, those from SHRSP showed a constant meshwork pattern throughout the entire examination period. In the distal portions of the MCA of both SHRSP and WKY rats at all ages examined, fluorescent nerve fibers formed a coarse network. The distribution densities of adrenergic nerve fibers in the proximal and distal portions of the MCA of SHRSP were significantly higher (P less than 0.01 and 0.05) than those of WKY rats at all ages examined, except in the proximal portion at 90 and 180 days of age. The difference in nerve fiber density between SHRSP and WKY rats reached a peak at 30 days of age in both proximal and distal portions, and then gradually decreased with age. The present study suggests that sympathetic hyperinnervation is an important factor in the development of hypertension, and is involved in its maintenance in SHRSP.  相似文献   

14.
自发性高血压大鼠血管α1肾上腺素受体亚型的改变   总被引:1,自引:0,他引:1  
韩启德  李金玲 《生理学报》1992,44(3):229-236
本工作在离体与整体条件下比较易卒中型自发性高血压(SHRSP)大鼠与WKY大鼠血管中α_1受体的两种亚型。在离体灌流的主动脉、肾动脉与肠系膜动脉,50μmol/L氯甲基可乐定(CEC)预温育30min可使α_1受体激动时引起的最大收缩张力在SHRSP与WKY大鼠分别降为对照时的31.4±8.3%与35.2±2.9%,68.4±8.2%与80.1±7.3%,68.4±6.3%与55.4±7.0%,两者间均无显著性差别。但10μmol/L硝苯吡啶对α_1受体收缩效应的阻断作用则在SHRSP大鼠大大超过WKY大鼠,最大收缩张力分别降为对照时的3.1±1.5%与56.5±4.8%(P<0.01),9.0±4.1%与23.6±3.5%(P<0.05),5.9±2.5%与28.0±0.8%(P<0.01)。整体动物实验也显示硝苯吡啶的降血压作用及对苯肾上腺素升血压效应的阻断作用在SHRSP大鼠都较WKY大鼠显著增强。离体主动脉a_1受体激动时的快速相与持续相收缩均主要由α_(1B)亚型激动引起,硝苯吡啶对快速相收缩的阻断作用在SHRSP与WKY大鼠无显著性差别,但对持续相收缩的阻断作用则在SHRSP大鼠显著强于WKY大鼠。上述结果提示SHRSP大鼠血管α_1受体两种亚型的分布没有显著改变,但α_(1B)受体激动时继发性细胞外Ca~(2+)进入的途径由非双氢吡啶敏感性钙通道转变为双氢吡啶敏感性钙通道。  相似文献   

15.
Mesangial cells (MC) are considered to play an important role in the development of hypertension. The purpose of this study was to characterize the effects of cytosolic Ca2+ on membrane voltage and conductance of MC using stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY). We applied the patch-clamp technique in the whole-cell configuration to measure membrane potential (Vm) and ion currents. There was no significant difference in resting Vm values between MC from WKY and SHRSP. The cytosolic Ca2+ increase induced membrane depolarization and the increase of Cl- currents in MC from WKY but not in MC from SHRSP. On the other hand, the Ca2+ increase induced membrane hyperpolarization and the increase of K+ currents in MC from SHRSP but not in MC from WKY. Such differences between MC from two rat strains may play an important role in the alterations in renal hemodynamics observed in hypertension.  相似文献   

16.
The distribution of fluorescent adrenergic nerve fibers in the proximal portion (horizontal segment, Hs) and the three distal portions (major branches) of the middle cerebral arteries (MCA) was examined in stroke-prone spontaneously hypertensive rats (SHRSP) aged 10, 30, 60, 90, and 180 days, by the glyoxylic acid method. The results were compared with those in agematched normotensive Wistar Kyoto (WKY) rats. While the distribution pattern of fluorescent nerve fibers in the proximal portion of WKY rats changed from a straight linear arrangement at 10 and 30 days of age to a network-like arrangement after 60 days, those from SHRSP showed a constant meshwork pattern throughout the entire examination period. In the distal portions of the MCA of both SHRSP and WKY rats at all ages examined, fluorescent nerve fibers formed a coarse network. The distribution densities of adrenergic nerve fibers in the proximal and distal portions of the MCA of SHRSP were significantly higher (P<0.01 and 0.05) than those of WKY rats at all ages examined, except in the proximal portion at 90 and 180 days of age. The difference in nerve fiber density between SHRSP and WKY rats reached a peak at 30 days of age in both proximal and distal portions, and then gradually decreased with age. The present study suggests that sympathetic hyperinnervation is an important factor in the development of hypertension, and is involved in its maintenance in SHRSP.  相似文献   

17.
The ultrastructure of the vascular smooth muscle cells of the middle cerebral artery in 6-month-old male stroke-prone spontaneously hypertensive rats (SHRSP) was studied by scanning (SEM) and transmission electron microscopy (TEM) and compared with that of age-matched normotensive Wistar Kyoto rats (WKY). Although the smooth muscle cells of WKY rats by SEM had a typical spindle shape and smooth surface texture, those of SHRSP were structurally modified by numerous surface invaginations and projections, bearing some structural resemblance to the myotendinous junction of skeletal muscle. Structural modifications affected more than half the surface of medial smooth muscle cells in SHRSP, but less than 0.6% of the surface of these cells in WKY rats. About 10% of medial smooth muscle cells were necrotic in SHRSP, but no necrotic cells were identified in WKY rats. By TEM, smooth muscle cells in SHRSP were shown to be irregular in profile with deep indentations of the plasma membrane and were surrounded by many layers of basal lamina-like material. The present study suggests that most smooth muscle cells in the middle cerebral artery of SHRSP may be modified to adapt to chronic hypertension by increasing the junctional area between muscle cells and connective tissue and that some cells may undergo necrosis.  相似文献   

18.
19.
The density of catecholamine-containing nerve fibers was studied in the cerebral and mesenteric arteries from normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP) in the growing (SHR, WKY) and adult (SHR, SHRSP, WKY) animals. Cerebral arteries from SHR showed an increased adrenergic innervation from day 1. The nerve plexuses reached an adult pattern earlier in SHR than in WKY. The arteries from adult SHR and SHRSP (22 weeks old) showed a markedly higher nerve density than WKY. There was a positive linear correlation between blood pressure and nerve density for four cerebral arteries. The mesenteric arteries were not innervated at birth. However, hyperinnervation of these arteries in the SHR was already present at 10 days of age as compared with WKY. Sympathectomy with anti-nerve growth factor and guanethidine caused a complete disappearance of fluorescent fibers in the mesenteric arteries from SHR and WKY, and in the cerebral arteries of WKY. The same procedure caused only partial denervation of the cerebral arteries from hypertensive animals. We postulate that the increase in nerve density in the cerebral arteries from the hypertensive rats may contribute to the development of arterial hypertrophy in chronic hypertension through the trophic effect of the sympathetic innervation on vascular structure.  相似文献   

20.
《Life sciences》1986,38(2):191-196
The aim of this study was to clarify whether the increased vascular tone in spontaneous hypertension of rats is due to a change of the calcium-sensitivity of the contractile proteins themselves. In skinned rat tail artery rings from SHRSP and WKY rats the calcium-requirement for half maximal activation (3.6 × 10−6M Ca++ for both rat strains) as well as relaxation half times (1.45 ± 0.43 min, SHRSP and 1.63 ± 0.48 min, WKY) were found to be identical. The extent of myosin phosphorylation in the contracted and in the relaxed state did not differ between SHRSP and WKY. It is concluded that changes at the level of the contractile proteins are not involved in the increased vascular tone of SHRSP essential hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号