首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tec family kinase Itk is an important regulator of Ca(2+) mobilization and is required for in vivo responses to Th2-inducing agents. Recent data also implicate Itk in TCR-induced regulation of the actin cytoskeleton. We have evaluated the requirements for Itk function in TCR-induced actin polarization. Reduction of Itk expression via small interfering RNA treatment of the Jurkat human T lymphoma cell line or human peripheral blood T cells disrupted TCR-induced actin polarization, a defect that correlated with decreased recruitment of the Vav guanine nucleotide exchange factor to the site of Ag contact. Vav localization and actin polarization could be rescued by re-expression of either wild-type or kinase-inactive murine Itk but not by Itk containing mutations affecting the pleckstrin homology or Src homology 2 domains. Additionally, we find that Itk is constitutively associated with Vav. Loss of Itk expression did not alter gross patterns of Vav tyrosine phosphorylation but appeared to disrupt the interactions of Vav with SLP-76. Expression of membrane-targeted Vav, Vav-CAAX, can rescue the small interfering RNA to Itk-induced phenotype, implicating the alteration in Vav localization as directly contributing to the actin polarization defect. These data suggest a kinase-independent scaffolding function for Itk in the regulation of Vav localization and TCR-induced actin polarization.  相似文献   

2.
3.
Developing thymocytes and T cells express the Tec kinases Itk, Rlk/Txk and Tec, which are critical modulators of T-cell receptor signaling, required for full activation of phospholipase Cγ, and downstream Ca(2+) and ERK-mediated signaling pathways. Over the last 10 years, data have implicated the Tec family kinases Itk and Rlk/Txk as important regulators of cytokine production by CD4(+) effector T-cell populations. Emerging data now suggest that the Tec family kinases not only influence cytokine-producing T-cell populations in the periphery, but also regulate the development of distinct innate-type cytokine-producing T-cell populations in the thymus. Together, these results suggest that the Tec family kinases play critical roles in helping shape immune responses via their effects on the differentiation and function of distinct cytokine-producing, effector T-cell populations.  相似文献   

4.

Background

The chemokine CXCL12/SDF-1α interacts with its G-protein coupled receptor CXCR4 to induce migration of lymphoid and endothelial cells. T cell specific adapter protein (TSAd) has been found to promote migration of Jurkat T cells through interaction with the G protein β subunit. However, the molecular mechanisms for how TSAd influences cellular migration have not been characterized in detail.

Principal Findings

We show that TSAd is required for tyrosine phosphorylation of the Lck substrate IL2-inducible T cell kinase (Itk). Presence of Itk Y511 was necessary to boost TSAd''s effect on CXCL12 induced migration of Jurkat T cells. In addition, TSAd''s ability to promote CXCL12-induced actin polymerization and migration of Jurkat T lymphocytes was dependent on the Itk-interaction site in the proline-rich region of TSAd. Furthermore, TSAd-deficient murine thymocytes failed to respond to CXCL12 with increased Itk phosphorylation, and displayed reduced actin polymerization and cell migration responses.

Conclusion

We propose that TSAd, through its interaction with both Itk and Lck, primes Itk for Lck mediated phosphorylation and thereby regulates CXCL12 induced T cell migration and actin cytoskeleton rearrangements.  相似文献   

5.
T cell activation by APC requires cytosolic Ca(2+) ([Ca(2+)](i)) elevation. Using two-photon microscopy, we visualized Ca(2+) signaling and motility of murine CD4(+) T cells within lymph node (LN) explants under control, inflammatory, and immunizing conditions. Without Ag under basal noninflammatory conditions, T cells showed infrequent Ca(2+) spikes associated with sustained slowing. Inflammation reduced velocities and Ca(2+) spiking in the absence of specific Ag. During early Ag encounter, most T cells engaged Ag-presenting dendritic cells in clusters, and showed increased Ca(2+) spike frequency and elevated basal [Ca(2+)](i). These Ca(2+) signals persisted for hours, irrespective of whether T cells were in contact with visualized dendritic cells. We propose that sustained increases in basal [Ca(2+)](i) and spiking frequency constitute a Ca(2+) signaling modality that, integrated over hours, distinguishes immunogenic from basal state in the native lymphoid environment.  相似文献   

6.
Expressed in mast and T-cells/inducible T cell tyrosine kinase (Emt/Itk) is a protein tyrosine kinase required for T cell Ag receptor (TCR)-induced activation and development. A physical interaction between Emt/Itk and TCR has not been described previously. Here, we have utilized laser scanning confocal microscopy to demonstrate that Ab-mediated engagement of the CD3epsilon chain induces the membrane colocalization of Emt/Itk with TCR/CD3. Removal of the Emt/Itk pleckstrin homology domain (DeltaPH-Emt/Itk) abrogates the association of the kinase with the cell membrane, as well as its activation-induced colocalization with the TCR complex and subsequent tyrosine phosphorylation. The addition of a membrane localization sequence to DeltaPH-Emt/Itk from Lck restores all of these deficiencies except the activation-induced tyrosine phosphorylation. Our data suggest that the PH domain of Emt/Itk can be replaced with another membrane localization signal without affecting the membrane targeting and activation-induced colocalization of the kinase with the TCR. However, the PH domain is indispensable for the activation-induced tyrosine phosphorylation of the kinase.  相似文献   

7.
Cell polarization and migration in response to chemokines is essential for proper development of the immune system and activation of immune responses. Recent studies of chemokine signaling have revealed a critical role for PI3-Kinase, which is required for polarized membrane association of pleckstrin homology (PH) domain-containing proteins and activation of Rho family GTPases that are essential for cell polarization and actin reorganization. Additional data argue that tyrosine kinases are also important for chemokine-induced Rac activation. However, how and which kinases participate in these pathways remain unclear. We demonstrate here that the Tec kinases Itk and Rlk play an important role in chemokine signaling in T lymphocytes. Chemokine stimulation induced transient membrane association of Itk and phosphorylation of both Itk and Rlk, and purified T cells from Rlk(-/-)Itk(-/-) mice exhibited defective migration to multiple chemokines in vitro and decreased homing to lymph nodes upon transfer to wt mice. Expression of a dominant-negative Itk impaired SDF-1alpha-induced migration, cell polarization, and activation of Rac and Cdc42. Thus, Tec kinases are critical components of signaling pathways required for actin polarization downstream from both antigen and chemokine receptors in T cells.  相似文献   

8.
Itk and Txk/Rlk are Tec family kinases expressed in T cells. Itk is expressed in both Th1 and Th2 cells. By contrast, Txk is preferentially expressed in Th1 cells. Although Itk is required for Th2 responses in vivo and Txk is suggested to regulate IFN-gamma expression and Th1 responses, it remains unclear whether these kinases have distinct roles in Th cell differentiation/function. We demonstrate here that Txk-null CD4(+) T cells are capable of producing both Th1 and Th2 cytokines similar to those produced by wild-type CD4(+) T cells. To further examine whether Itk and Txk play distinct roles in Th cell differentiation and function, we examined Itk-null mice carrying a transgene that expresses Txk at levels similar to the expression of Itk in Th2 cells. Using two Th2 model systems, allergic asthma and schistosome egg-induced lung granulomas, we found that the Txk transgene rescued Th2 cytokine production and all Th2 symptoms without notable enhancement of IFN-gamma expression. These results suggest that Txk is not a specific regulator of Th1 responses. Importantly, they suggest that Itk and Txk exert their effects on Th cell differentiation/function at the level of expression.  相似文献   

9.
CD44 is a cell adhesion molecule implicated in leukocyte adhesion and migration, co-stimulation of T cells, and tumor metastasis. CD45 is a leukocyte-specific protein tyrosine phosphatase that dephosphorylates the Src family kinases, Lck and Fyn, in T cells. Positive regulation of Lck by CD45 is required for its effective participation in T cell receptor signaling events. Here, immobilized CD44 antibody induced a distinctive cell spreading in CD45(-), but not CD45(+), T cells, and this correlated with the induction of tyrosine-phosphorylated proteins. Two focal adhesion family kinases, Pyk2 and, to a lesser extent, FAK were inducibly phosphorylated, as was a potential substrate, Cas. CD44-mediated cell spreading and induced tyrosine phosphorylation were prevented by the Src family kinase inhibitor, PP2. Furthermore, 2-fold more Lck associated with CD44 in the low density sucrose fraction from CD45(-) T cells compared with CD45(+) T cells, suggesting that CD45 may regulate the association of Lck with CD44 in this fraction. Therefore, in CD45(-) T cells, CD44 signaling is mediated by Src family kinases, and this leads to Pyk2 phosphorylation, cytoskeletal changes, and cell spreading. This implicates CD45 in the negative regulation of Src family kinase-mediated CD44 signaling leading to T cell spreading.  相似文献   

10.
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR.  相似文献   

11.
The formation of a conjugate between a T cell and an APC requires the activation of integrins on the T cell surface and remodeling of cytoskeletal elements at the cell-cell contact site via inside-out signaling. The early events in this signaling pathway are not well understood, and may differ from the events involved in adhesion to immobilized ligands. We find that conjugate formation between Jurkat T cells and EBV-B cells presenting superantigen is mediated by LFA-1 and absolutely requires Lck. Mutations in the Lck kinase, Src homology 2 or 3 domains, or the myristoylation site all inhibit conjugation to background levels, and adhesion cannot be restored by the expression of Fyn. However, ZAP-70-deficient cells conjugate normally, indicating that Lck is required for LFA-1-dependent adhesion via other downstream pathways. Several drugs that inhibit T cell adhesion to ICAM-1 immobilized on plastic, including inhibitors of mitogen-activated protein/extracellular signal-related kinase kinase, phosphatidylinositol-3 kinase, and calpain, do not inhibit conjugation. Inhibitors of phospholipase C and protein kinase C block conjugation of both wild-type and ZAP-70-deficient cells, suggesting that a phospholipase C that does not depend on ZAP-70 for its activation is involved. These results are not restricted to Jurkat T cells; Ag-specific primary T cell blasts behave similarly. Although the way in which Lck signals to enhance LFA-1-dependent adhesion is not clear, we find that cells lacking functional Lck fail to recruit F-actin and LFA-1 to the T cell:APC contact site, whereas ZAP-70-deficient cells show a milder phenotype characterized by disorganized actin and LFA-1 at the contact site.  相似文献   

12.
Ly-6 proteins appear to serve cell adhesion and cell signaling function, but the precise role of Ly-6A.2 in CD4+ T lymphocytes is still unclear. Overexpression of Ly-6A.2 in T lymphocytes has allowed us to analyze the influence of elevated Ly-6A.2 expression on T cell function. In this study we report reduced proliferation of CD4+ T cells overexpressing Ly-6A.2 in response to a peptide Ag. Moreover, the Ly-6A.2-overexpressing CD4+ cells generated elevated levels of IL-4, a key factor that propels the differentiation of naive CD4+ T cells into Th2 subset. The hyporesponsiveness of Ly-6A.2 transgenic CD4+ T cells is dependent on the interaction of Ly-6A.2 T cells with the APCs and can be reversed by blocking the interaction between Ly-6A.2 and a recently reported candidate ligand. Overexpression of Ly-6A.2 in CD4+ T cells reduced their Ca(2+) responses to TCR stimulation, therefore suggesting effects of Ly-6A.2 signaling on membrane proximal activation events. In contrast to the observed Ag-specific hyporesponsiveness, the Ly-6A.2 transgenic CD4+ T cells produced IL-4 independent of the interactions between Ly-6A.2 and the candidate Ly-6A.2 ligand. Our results suggest that 1) interaction of Ly-6A.2 with a candidate ligand regulates clonal expansion of CD4+ Th cells in response to an Ag (these results also provide further functional evidence for presence of Ly-6A.2 ligand on APC); and 2) Ly-6A.2 expression on CD4+ T cells promotes production of IL-4, a Th2 differentiation factor.  相似文献   

13.
Imaging early steps of human T cell activation by antigen-presenting cells.   总被引:1,自引:0,他引:1  
In this work the Ca2+ response and the morphological changes elicited by Ag in human CD4+ T cells are described at the single cell level. The APC used to present the diphtheria toxoid Ag to a human diphtheria toxoid-specific T cell clone were murine L cell fibroblast transfectants expressing MHC class II molecules. The increase of the intracellular Ca2+ concentration, [Ca2+]i, which is one of the earliest steps of the response to TCR stimulation, was followed by fluorimetry with fura-2 on an imaging system. This response was a specific consequence of successful Ag presentation, because it only took place when fibroblasts expressed both class II MHC molecules and Ag. CD4 molecules were also involved in this intercellular interaction, because the Ca2+ response could be inhibited by preincubating the T cells with an anti-CD4 antibody. The response induced by APC started after a delay of at least 6 min, after which large Ca2+ oscillations took place, with a pseudo period of 100 s at 35 degrees C. The frequency of these oscillations decreased with temperature. The oscillations became progressively more damped during the first 30 to 40 min of cell-to-cell interaction, after which they completely stopped; however, [Ca2+]i remained well above its resting level for more than 1 h after the contact. The Ca2+ oscillations were entirely dependent on Ca2+ influx because they immediately disappeared when external calcium was removed. Similar oscillations were observed when the cells were stimulated with an anti-CD3 antibody. After stimulation with APC, many T cells abandoned their spherical shape and tended to flatten and elongate. This aspect of the T cell response was not observed after stimulation with an anti-CD3 antibody. In the presence of cytochalasin B, the morphologic changes elicited by the APC were blocked, whereas the Ca2+ response was slightly enhanced. However, when T cells were loaded with the Ca2+ chelator BAPTA, both Ca2+ and morphologic changes were inhibited, suggesting that the Ca2+ response plays a permissive role for the morphologic changes.  相似文献   

14.
Itk, a Tec family tyrosine kinase, acts downstream of Lck and phosphatidylinositol 3'-kinase to facilitate T cell receptor (TCR)-dependent calcium influxes and increases in extracellular-regulated kinase activity. Here we demonstrate interactions between Itk and crucial components of TCR-dependent signaling pathways. First, the inositide-binding pocket of the Itk pleckstrin homology domain directs the constitutive association of Itk with buoyant membranes that are the primary site of TCR activation and are enriched in both Lck and LAT. This association is required for the transphosphorylation of Itk. Second, the Itk proline-rich region binds to Grb2 and LAT. Third, the Itk Src homology (SH3) 3 and SH2 domains interact cooperatively with Syk-phosphorylated SLP-76. Notably, SLP-76 contains a predicted binding motif for the Itk SH2 domain and binds to full-length Itk in vitro. Finally, we show that kinase-inactive Itk can antagonize the SLP-76-dependent activation of NF-AT. The inhibition of NF-AT activation depends on the Itk pleckstrin homology domain, proline-rich region, and SH2 domain. Together, these observations suggest that multivalent interactions recruit Itk to LAT-nucleated signaling complexes and facilitate the activation of LAT-associated phospholipase Cgamma1 by Itk.  相似文献   

15.
Itk, a member of the Tec family of tyrosine kinases, is critical for TCR signaling, leading to the activation of phospholipase C gamma1. Early biochemical studies performed in tumor cell lines also implicated Itk in CD28 signaling. These data were complemented by functional studies on primary Itk-/- T cells that suggested a negative role for Itk in CD28 signaling. In this report, we describe a thorough analysis of CD28-mediated responses in T cells lacking Itk. Using purified naive CD4+ T cells from Itk-/- mice, we examine a range of responses dependent on CD28 costimulation. We also analyze Akt and glycogen synthase kinase-3beta phosphorylation in response to stimulation of CD28 alone. Overall, these experiments demonstrate that CD28 signaling, as well as CD28-mediated costimulation of TCR signaling, function efficiently in the absence of Itk. These findings indicate that Itk is not essential for CD28 signaling in primary naive CD4+ T cells.  相似文献   

16.
17.
We have examined the role of the human responder APC in the generation of CTL responses to xenogeneic antigens. Of six xenogeneic responses evaluated, only the human antimurine response was dependent on human APC for CTL generation. APC requirements for the other five xenogeneic responses more closely resembled those observed in the generation of human or murine alloreactive CTL. Depletion studies identified a defective human CD4+ Th cell-murine stimulator cell interaction that could be bypassed by the addition of exogenous IL-2. The function of the responder APC involved in the human antimurine CTL response was inhibited by chloroquine, suggesting a requirement for Ag processing. Effective presentation of murine stimulator Ag by human APC was completely blocked by anti-human Ia mAb, indicating that the Ag is presented to Th cells via the human class II molecule. These results are consistent with an Ia-dependent recognition of processed murine Ag by human T cells and represents a model for investigating human T cell activation requirements, Th cell function, and MHC restriction.  相似文献   

18.
19.
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.  相似文献   

20.
Lymphocyte homing to, and motility within, lymph nodes is regulated by the chemokine receptor CCR7 and its two ligands CCL19 and CCL21. There, lymphocytes are exposed to a number of extracellular stimuli that influence cellular functions and determine the cell fate. In this study, we assessed the effect of TCR engagement on CCR7-mediated cell migration. We found that long-term TCR triggering of freshly isolated human T cells through CD3/CD28 attenuated CCR7-driven chemotaxis, whereas short-term activation significantly enhanced CCR7-mediated, but not CXCR4-mediated, migration efficiency. Short-term activation most prominently enhanced the migratory response of naive T cells of both CD4 and CD8 subsets. We identified distinct roles for Src family kinases in modulating CCR7-mediated T cell migration. We provide evidence that Fyn, together with Ca(2+)-independent protein kinase C isoforms, kept the migratory response of naive T cells toward CCL21 at a low level. In nonactivated T cells, CCR7 triggering induced a Fyn-dependent phosphorylation of the inhibitory Tyr505 of Lck. Inhibiting Fyn in these nonactivated T cells prevented the negative regulation of Lck and facilitated high CCR7-driven T cell chemotaxis. Moreover, we found that the enhanced migration of short-term activated T cells was accompanied by a synergistic, Src-dependent activation of the adaptor molecule linker for activation of T cells. Collectively, we characterize a cross-talk between the TCR and CCR7 and provide mechanistic evidence that the activation status of T cells controls lymphocyte motility and sets a threshold for their migratory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号