首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native and exotic fishes were collected from 29 sites across coastal and inland New South Wales, Queensland and Victoria, using a range of techniques, to infer the distribution of Bothriocephalus acheilognathi (Cestoda: Pseudophyllidea) and the host species in which it occurs. The distribution of B. acheilognathi was determined by that of its principal host, carp, Cyprinus carpio; it did not occur at sites where carp were not present. The parasite was recorded from all native fish species where the sample size exceeded 30 and which were collected sympatrically with carp: Hypseleotris klunzingeri, Hypseleotris sp. 4, Hypseleotris sp. 5, Phylipnodon grandiceps and Retropinna semoni. Bothriocephalus acheilognathi was also recorded from the exotic fishes Gambusia holbrooki and Carassius auratus. Hypseleotris sp. 4, Hypseleotris sp. 5, P. grandiceps, R. semoni and C. auratus are new host records. The parasite was not recorded from any sites in coastal drainages. The only carp population examined from a coastal drainage (Albert River, south-east Queensland) was also free of infection; those fish had a parasite fauna distinct from that of carp in inland drainages and may represent a separate introduction event. Bothriocephalus acheilognathi has apparently spread along with its carp hosts and is so far restricted to the Murray-Darling Basin. The low host specificity of this parasite is cause for concern given the threatened or endangered nature of some Australian native freshwater fish species. A revised list of definitive hosts of B. acheilognathiis presented.  相似文献   

2.
Many freshwater ecosystems and biotas around the world are threatened with extinction. Freshwater fishes, for example, are the most endangered vertebrates after amphibians. Exotic fish are widely recognized as a major disturbance agent for native fish. Evaluating the ecological effects of invaders presents many challenges and the problem is greatly augmented in parts of the world where the native fauna is poorly known and where exotic species are commonplace. We use the fish community of Patagonia, a small and distinct native biota dominated by exotic salmonids, as a case study to ask: what can we learn about the effects of exotic fish species from fragmentary or partial data and how do such data point the way to what needs to be learned? We review the available data and literature on the distribution and status of native and introduced fish. We compile a novel regional presence/absence species database, build fish distribution maps, describe distribution patterns of native and exotic species, and identify critical information voids. A comparative review of literature from Patagonia and Australasia, where a similar native and exotic fish fauna is found, helps us to identify research priorities and promising management strategies for the conservation of native fish fauna. We conclude that the main challenge for fish conservation in Patagonia is to identify management strategies that could preserve native species while maintaining the quality of salmonid fisheries.  相似文献   

3.
Synopsis The ichthyofauna of the Sepik-Ramu basin is composed of diadromous species and the freshwater derivatives of marine families. Fish species diversity, ichthyomass and fish catches are low even by Australasian standards. Three major factors have produced the depauperate ichthyofauna and restricted fishery within the basin: First, the zoogeographic origins of the ichthyofauna. Australasian freshwater fishes, being mainly derived from marine families, generally exhibit ecological characteristics that have evolved for life in estuaries, not rivers. This has led to peculiarities in river fish ecology and explains the probable low fish production from rivers in this region in general. Several important riverine trophic resources are not exploited by the Australasian freshwater ichthyofauna. The modes of reproduction amongst the Australasian freshwater ichthyofauna have limited the colonisation and exploitation of floodplain habitats. Second, Sepik-Ramu lowland habitats, especially floodplains, are very young. This has resulted in low fish species diversity in lowlands, whilst diversity at higher altitudes is equable, in comparison to river systems in southern New Guinea/ northern Australia. Third, the Sepik-Ramu lacks an estuary in sharp contrast to river systems in southern New Guinea or northern Australia. Most of the 18 families of Australasian fishes missing from the Sepik-Ramu are probably absent because of this factor alone. In particular, the Sepik-Ramu has not been colonised by any family of fishes having pelagic eggs, resulting in the loss from the fauna of the few Australasian fish taxa with high reproductive rates. Consequently, the general problems with river fish ecology in Australasia are exacerbated within the Sepik-Ramu by the particular development and morphology of the basin. Fish species diversity in the Sepik-Ramu is low, even in comparison with those taxa representative of marine families resident in rivers in nearby zoogeographic regions (S.E. Asia) whose ichthyofaunas are otherwise dominated by freshwater dispersant groups. The Sepik-Ramu ichthyofauna is considered noteworthy for what is absent, not what is present. Ichthyomass and fish production can be increased by fish species introductions whilst, in theory, biodiversity of the native fish fauna can be maintained. The directions in which ecological evaluations of proposed introductions might proceed in practice for the Sepik-Ramu are discussed but are constrained by the lack of knowledge on species interactions from other areas.  相似文献   

4.
The Bolivian part of the Amazon Basin contains a mega diverse and well-preserved fish fauna. Since the last decade, this fish fauna has received an increasing attention from scientists and the national authorities as fishes represent one of the most important sources of proteins for local human communities. However, this fish fauna still remains poorly documented. Here, we present a database for fishes from the Bolivian Amazon. To build the database, we conducted an extensive literature survey of native and non-native (exotic) fishes inhabiting all major sub-drainages of the Bolivian Amazon. The database, named Fish-AMAZBOL, contains species lists for 13 Amazonian hydrological units, covering 100% of the Bolivian Amazon and approximately 65% (722,137 km2) of the all territory. Fish-AMAZBOL includes 802 valid species, 12 of them being non-native, that have been checked for systematic reliability and consistency. To put this number in perspective, this represents around 14% of the all Neotropical ichthyofauna and around 6% of all strictly freshwater fishes inhabiting the planet. This database is currently the most comprehensive database of native and non-native fish species richness available so far for the Bolivian Amazon.  相似文献   

5.
We surveyed the watersheds covering more than 80% of the surface area of Nicaragua, and review the history of deliberate introductions and unintentional invasion of tilapias, Oreochromis spp., into the freshwater of Nicaragua. The species have become widely established, with a range of negative consequences for the rich natural fish fauna of this Central American country. Tilapias compete directly with native cichlids in a number of ways, and have also supplanted native species as food fish in local markets. We suggest that introduced tilapias may have been responsible for the outbreak of blindness in native cichlids. We make recommendations on the management of these exotic species and on further introductions. An erratum to this article can be found at  相似文献   

6.
Aim To compare patterns and drivers of freshwater fish introductions across five climatically similar regions and evaluate similarities and differences in the non‐native species introduced. Location Five mediterranean‐climate regions: California (USA), central Chile, south‐western Australia, the Iberian peninsula (Spain and Portugal) and the south‐western Cape (South Africa). Methods Species presence–absence for native and non‐native fishes were collated across the regions, and patterns of faunal change were examined using univariate and multivariate statistical approaches. Taxonomic patterns in freshwater fish introductions were evaluated by comparing the number of species introduced by order to the numbers expected from binomial probabilities. Factors influencing multiple introductions of freshwater fish species in mediterranean regions were determined using generalized linear modelling. Results High levels of endemism (70–90%) were revealed for south‐western Cape, south‐western Australia and Chile. Despite their high rates of endemism, all regions currently have more non‐native species than endemic species. Taxonomic selection was found for five orders, although this was only significant for Salmoniformes across regions. The average increase in regional compositional similarity of fish faunas resulting from non‐native fish introductions was 8.0%. Important factors predicting multiple introductions of a species include previous introduction success and mean latitude of its distribution Main conclusions The mediterranean‐climate regions of the world, separated by vast distances, originally had a few fish species in common but are now more similar, owing to species introductions, illustrating the extent and importance of taxonomic homogenization. Introductions are largely driven by taxonomically biased human interests in recreational fisheries, aquaculture and ornamental pet species.  相似文献   

7.
Although freshwater fishes have a long history of human-induced introduction, recent globalization has accelerated worldwide introduction events even more, and those introduced fish species are now perceived to be a major threat to ecosystems. Over the last two decades, numerous studies have been published on introduced fish species; however, it has been challenging for researchers to understand the magnitude of the impact and the underlying mechanism of invasions. Recently, new perspectives in understanding invasive freshwater fish biology have been presented in a number of studies, which can be largely attributed to advances in analytical techniques and also to a growing need for proactive analysis in management strategies. The aim of this paper is to summarize new ecological perspectives, the need for research, and/or management implications with emphasis on technological advances in, for example, statistics, molecular analysis, modeling techniques, and landscape analysis addressed under the following five categories: introduction pathways, predicting spatial patterns, biotic homogenization, hybridization, and control and eradication. The conservation of native fish fauna and the management of introduced fish species will benefit from combining these new perspectives with fundamental studies such as those on life history and population biology.  相似文献   

8.
In Lake Pátzcuaro in the Mesa Central of México, a total of 19 species of helminths was found in 598 fishes and comprised five digeneans, two monogeneans, four cestodes, one acanthocephalan and seven nematodes, of which ten species were represented by larval or immature states. The richest and most diverse helminth communities were found in the native carnivorous goodeid Alloophorus robustus. In general, the helminth communities in the different fish species were not particularly species rich and the parasite assemblages were numerically dominated by larvae of the bird trematode, Posthodiplostomum minimum. Patterns of helminth community richness and diversity were similar to those previously observed in north-temperate freshwater fishes. Most enteric helminths occurred with low abundance and only a small proportion of the gut helminth communities was numerically dominated by any one species. Helminths dominating their enteric communities showed some level of host specificity. Helminth communities in carnivorous fish species were generally richer than those in herbivores and detritivores, with the exception of the predominantly herbivorous Goodea atripinnis. The helminth fauna of introduced fishes, Cyprinus carpio, Micropterus salmoides and Oreochromis niloticus , consisted of either few or no host-specific adult helminth(s) translocated from their original geographical areas and by larval stages of helminths of piscivorous birds. Based on the geological history of the area and the biogeography of the endemic fish fauna, it is hypothesized that host-switching and relationships with the nearctic fauna have been fundamental in determining the helminth fauna of the endemic fish hosts.  相似文献   

9.
Studies on the helminth parasites of freshwater fishes of the Sudan   总被引:1,自引:0,他引:1  
Lotfi F.  Khalil 《Journal of Zoology》1969,158(2):143-170
2419 freshwater fishes from the Sudan were examined for helminth parasites and found to harbour one monogenean species, 15 species of adult digenetic trematodes, three species of larval trematodes, 16 species of adult cestodes, 13 species of adult nematodes, two species of larval nematodes and three species of acanthocephalans. Four species of adults and four species of larval worms are recorded for the first time in the Sudan and 30 new hosts are listed. The intensity of infestation of each species, the host-specificity and the variations in the infestation of fishes are discussed. The helminth fauna of the Sudan is compared with that of other African countries.  相似文献   

10.
We provide evidence of reproductive activities of nine Asian freshwater fish species belonging to three families in Atlantic Forest creeks located in the Paraíba do Sul River basin, southeastern Brazil, an area rich in endemic and endangered fish fauna. These non-native fishes were introduced into the natural systems by both accidental and intentional releases from ornamental fish farms in the region. Adults of all species were found reproducing during virtually all year round and showed fractionated spawning. Imature individuals (young-of-the-year and juveniles) were also frequent in the five sites. Most of the total sex ratios were close to 1:1. The frequent releases, warm water temperature, marginal vegetation providing food, protection and spawning sites, and the low richness of native fishes in these creeks can facilitate the establishment process of all species. The creeks can also act as dispersing agents of non-native fishes after flash floods, leading to biotic homogenization or differentiation in the local fish community, competition with native fishes, and parasite dissemination. Given the flourishing aquaculture activity in the area, it is expected that these and other non-native species cause extensive modifications in the regional ichthyofauna.  相似文献   

11.
Distributional records of non‐native fish species were identified in the Wet Tropics region, Far North Queensland, Australia, through a compilation of published records and expert knowledge. A total of 1106 records were identified comprising 346 presence and four uncertain records for at least 13 species, and 756 absence records. All current presence records consist of six species from the families Cichlidae and Poeciliidae with established self‐sustaining populations in the region, probably affecting the highly diverse native fish fauna.  相似文献   

12.
The upper Tennessee River drainage, which includes portions of the States of Virginia, North Carolina, and Tennessee, supports an exceptionally diverse fish fauna. Recent reductions in abundance and geographic ranges of several freshwater fishes have promulgated the imposition of protective measures for about 115 species among the three states, with nearly half of those species occurring in the upper Tennessee River. Most protected species are darters (Percidae: Etheostomatinae) or minnows (Cyprinidae), and are typically small, benthic invertivores. Major impacts on the fish fauna have resulted from dams, introduced species, toxic spills, mining and agriculture. An important cumulative effect of these impacts is fragmentation of the watershed; nearly 40% of the riverine habitat in major tributaries is either impounded or altered by tailwater discharges. The isolation and stress imposed on tributaries of the river have caused and will continue to cause extirpations of fishes, mussels and other aquatic fauna. Numerous federal, state, and private organizations are co-operating in efforts to protect rare species and habitats, improve agricultural and coal-producing practices, and enforce regulations for industrial and municipal effluents.  相似文献   

13.
If the cestodes are excluded, then the parasitic platyhelminths of fishes divide neatly into the external and monoxenous Monogenea and the internal and heteroxenous Digenea. Both groups have apparently had long associations of coevolution, host switching and adaptation with fishes and have become highly successful in their respective habitats. Current estimates of species richness for the two groups suggest that they may be remarkably similar. Here we consider the nature of the diversity of the Monogenea and Digenea of fishes in terms of richness of species and higher taxa to determine what processes may be responsible for observed differences. The Monogenea includes at least two super-genera (Dactylogyrus and Gyrodactylus) each of which has hundreds of species; no comparable genera are found in the Digenea. Possible reasons for this difference include the higher host specificity of monogeneans and their shorter generation time. If allowance is made for the vagaries of taxonomic 'lumping' and 'splitting', then there are probably comparable numbers of families of monogeneans and digeneans in fishes. However, the nature of the families differ profoundly. Richness in higher taxa (families) in the Digenea is explicable in terms of processes that appear to have been unimportant in the Monogenea. Readily identifiable sources of diversity in the Digenea are: recolonisation of fishes by taxa that arose in association with tetrapods; adoption of new sites within hosts; adoption of new diets and feeding mechanisms; adaptations relating to the exploitation of ecologically similar groups of fishes and second intermediate hosts; and adaptations relating to the exploitation of phylogenetic lineages of molluscs. In contrast, most higher- level monogenean diversity (other than that associated with the subclasses) relates principally to morphological specialisation for attachment by the haptor.  相似文献   

14.
During a parasitological survey carried out between March and September 2003 in Cuba, the following monogeneans were found on the gills of freshwater fishes: Salsuginus cubensis n. sp. on the Cuban molly Limia vittata Guichenot (Poeciliidae); Cichlidogyrus sclerosus Paperna & Thurston, 1969 and C. tilapiae Paperna, 1960 on the African cichlid Tilapia rendalli Boulenger (Cichlidae); Haplocleidus dispar Mueller, 1936 and Pterocleidus acer Mueller, 1936 (all Dactylogyridae) on the sunfish Lepomis macrochirus Rafinesque (Centrarchidae) (new geographical records); and Gyrodactylus sp. (Gyrodactylidae) on the biajaca Nandopsis tetracanthus Valenciennes (Cichlidae) (new host and geographical record). Salsuginus cubensis differs from all other species of the genus in the size and morphology of the copulatory complex. The occurrence of C. sclerosus, C. tilapiae, H. dispar and P. acer in their respective hosts is due to the introduction of these hosts to Cuba. A review of the species composition of the Monogenea in native and introduced freshwater fish from Cuba is presented and the zoogeographical distribution of the species found is briefly discussed.  相似文献   

15.
Invasion of North American drainages by alien fish species   总被引:8,自引:0,他引:8  
1. Data from the literature were used to document colonization patterns by introduced freshwater fishes in 125 drainages across temperate North America. We analysed this data set to quantify susceptibility to invasion, success of the invaders and changes in species richness.
2. Drainages with a high number of impoundments, large basin area and low native species diversity had the greatest number of introduced species. Those drainages containing few native fishes exhibited great variation in the number of invaders, while waters with a rich native fauna contained few introduced species. However, this pattern did not differ significantly from random simulations because the pool of potential invaders is greater for drainages with low species richness.
3. In most drainages, there were more introduced than imperilled or extirpated species, suggesting that invaders tend to increase overall species richness.
4. These patterns suggest that North American fish communities are not saturated with species, but instead, are capable of supporting higher levels of diversity if the pool of potential colonists and the rate of colonization from that pool is increased.  相似文献   

16.
This report details the first detection of invasive freshwater shrimp in the south-west of Western Australia, a region recognised for its biodiversity and the vulnerability of its endemic species. The species was detected as part of biosecurity surveillance of Perth’s freshwater lakes. The introduced specimens were tentatively identified morphologically as Caridina indistincta, and then confirmed by molecular analysis as “species B” of that taxon, part of a species-complex native to eastern Australia. Phylogeographic analyses were then used to narrow down the likely source population to a small area of south-eastern Queensland, over 3500 kms across the continent from the invasion sites. The potential source area is heavily involved in the trade in freshwater species for aquaria and recreational fish stocking. This information will help in identifying the precise invasion vector and could thus allow more targeted management measures to prevent future imports of exotic aquatic invasive species.  相似文献   

17.
The data on infestation of 8 species of commercial fishes from Saya-de-Malya bank (the Indian Ocean) are presented. 43 helminth species were identified: 10 Monogenea species, 18 trematode, 7 cestode and 8 nematode species. The mature worms are observed to be related to a certain host, whereas the nematode and cestode larvae have wide specificity. High infestation degree by Anisakis larvae is found in fishes, especially in Carangidae. At the bank area fishes are found to be free from Acanthocephala while those Acanthocephala are found in fishes from other areas of the Indian Ocean which may be attributed to the specific diet at the Saya-de-Malya bank. On the whole the helminth fauna of fishes examined at the Saya-de-Malya bank does not demonstrate the endemic pattern. The most specific helminth species were found in some fish species.  相似文献   

18.
Distribution of the freshwater fishes of Japan: an historical overview   总被引:2,自引:0,他引:2  
Japanese freshwater fishes, including lampreys, comprise 15 orders, 35 families, and 96 genera, with 211 species and subspecies. Most belong to the families Cyprinidae (29% of species and subspecies), Gobiidae (21%), Salmonidae (10%), and Cobitidae (8%). Cyprinids and cobitids presumably originated from east Asia, gobiids from southeast Asia, and cottids and salmonids from the north Pacific. Japanese freshwater fishes include 88 endemic species and subspecies, of which three have been extirpated. Fishes introduced into natural rivers and lakes for inland commercial fisheries and sport fishing, and by accident, include many exotic species, of which 23 now inhabit natural freshwaters. These often have destroyed the local fish fauna by predation, and caused genetic pollution by hybridization with local strains. Destruction of freshwater environments by land development also poses a threat to Japanese freshwater fish communities. In addition Japanese freshwater systems have been markedly altered by development of rice paddy fields which have caused some species to decline but others to flourish, and changed the distribution patterns of fishes between upstream and downstream areas. To conserve endangered species and declining communities of Japanese freshwater fishes, we need to clarify the characteristics of their original habitats and the effects of developing paddy fields, from both the ecological and historical points of view.  相似文献   

19.
This review provides a contemporary account of knowledge on aspects of introductions of non‐native fish species and includes issues associated with introduction pathways, ecological and economic impacts, risk assessments, management options and impact of climate change. It offers guidance to reconcile the increasing demands of certain stakeholders to diversify their activities using non‐native fishes with the long‐term sustainability of native aquatic biodiversity. The rate at which non‐native freshwater fishes have been introduced worldwide has doubled in the space of 30 years, with the principal motives being aquaculture (39%) and improvement of wild stocks (17%). Economic activity is the principal driver of human‐mediated non‐native fish introductions, including the globalization of fish culture, whereby the production of the African cichlid tilapia is seven times higher in Asia than in most areas of Africa, and Chile is responsible for c. 30% of the world's farmed salmon, all based on introduced species. Consequently, these economic benefits need balancing against the detrimental environmental, social and economic effects of introduced non‐native fishes. There are several major ecological effects associated with non‐native fish introductions, including predation, habitat degradation, increased competition for resources, hybridization and disease transmission. Consideration of these aspects in isolation, however, is rarely sufficient to adequately characterize the overall ecological effect of an introduced species. Regarding the management of introduced non‐native fish, pre‐introduction screening tools, such as the fish invasiveness scoring kit (FISK), can be used to ensure that species are not introduced, which may develop invasive populations. Following the introduction of non‐native fish that do develop invasive populations, management responses are typified by either a remediation or a mitigation response, although these are often difficult and expensive to implement, and may have limited effectiveness.  相似文献   

20.
Case histories of some of Australia's most threatened native freshwater fishes are presented. These include: six endangered species, Galaxias fontanus, G. johnsroni, G. pedderensis (Galaxiidae), Melanataenia euchamensis (Melanotaeniidae), Maccullochella sp. nov. and M. macquariensis (Percichthyidae): one vulnerable species, Galaxias tanycephalus: two potentially threatened species. Galaxias parvus and Prototroctes maraena (Prototroctidae); one indeterminate species. Maccllochella sp.; one restricted species, Macquaria australasica (Percichthyidae). Aspects of their taxonomy, distribution and reasons for their decline are discussed. Conservation management strategies that have been or are being applied to most of these species include protection of the fish and their habitats, establishment of refuge populations, and artificial propagation and re-establishment programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号