首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Park JW  Kim S  Bahk YY 《Proteomics》2006,6(8):2433-2443
To elucidate an understanding into H-Ras protein network, we have established various oncogene H-Ras-expressing NIH/3T3 mouse embryonic fibroblast cell clones, which are expressing G12V H-Ras, G12R H-Ras, and G12V/T35S H-Ras proteins under the tight control of expression by an antibiotic doxycycline. Here we provide a catalog of proteome profiles in total cell lysate derived from the oncogenic and partial loss of function H-Ras-expressing NIH/3T3 cells. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis and MALDI-TOF-MS analysis both commonly in oncogenic and partial loss of function H-Ras expression system. Thus, we tried to dissect H-Ras signaling pathway, especially a downstream effector molecule, Raf in NIH/3T3 cells using proteomics tools. In this study, we centralized upon the proteome profile changes as common targets for oncogenic H-Ras and a partial loss of function H-Ras in the H-Ras-expressing cells. Thirteen protein spots were selected as what the staining intensities on the gels for 2-DE images from both kinds of cells were consistently changed in their protein expression level. Differentially regulated expression was further confirmed for some subsets of candidates by semiquantitative RT-PCR and Western blot analysis using specific antibodies. Taken together, our results obtained and present here show that the comparative analysis of proteome from oncogenic and partial loss of function H-Ras-expressing cells has yielded interpretable data to elucidate the protein network directly and/or indirectly.  相似文献   

2.
Kim S  Lee YZ  Kim YS  Bahk YY 《Proteomics》2008,8(15):3082-3093
Point mutations in three kinds of Ras protein (H-, K-, and N-Ras) that specifically occur in codons 12, 13, and 61 facilitate virtually all of the malignant phenotype of the cancer cells, including cellular proliferation, transformation, invasion, and metastasis. In order to elucidate an understanding into the oncogenic ras networks by H-, K-, and N-Ras/G12V, we have established various oncogenic ras expressing NIH/3T3 mouse embryonic fibroblast clones using the tetracycline-induction system, which are expressing Ras/G12V proteins under the tight control of expression by an antibiotics, doxycycline. Here we provide a catalog of proteome profiles in total cell lysates derived from three oncogenic ras expressing NIH/3T3 cells and a good in vitro model system for dissecting the protein networks due to these oncogenic Ras proteins. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis, and MALDI-TOF MS analysis using the unique Tet-on inducible expression system. There were a large number of common targets for oncogenic ras, which were identified in all three cell lines and consisted of 204 proteins (61 in the pH range of 4-7, 63 in 4.5-5.5, and 80 in 5.5-6.7). Differentially regulated expression was further confirmed for some subsets of candidates by Western blot analysis using specific antibodies. Taken together, we implemented a 2-DE-based proteomics approach to the systematical analysis of the dysregulations in the cellular proteome of NIH/3T3 cells transformed by three kinds of oncogenic ras. Our results obtained and presented here show that the comparative analysis of proteome from oncogenic ras expressing cells has yielded interpretable data to elucidate the differential protein expression directly and/or indirectly, and contributed to evaluate the possibilities for physiological, and therapeutic targets. Further studies are in progress to elucidate the implications of these findings in the regulation of Ras induced transformation.  相似文献   

3.
4.
SURF-6 is a bona fide nucleolar protein comprising an evolutionary conserved family that extends from human to yeast. The expression of the mammalian SURF-6 has been recently found to be regulated during the cell cycle. In order to determine the importance of SURF-6 in mammalian cells, we applied the Tet-On system to regulate conditionally, in response to tetracycline, the expression of an antisense RNA (asRNA) that targets Surf-6 mRNA in mouse NIH/3T3 cells. Induced Surf-6 asRNA caused an effective depletion of SURF-6 protein resulted in cell death and in an apparent arrest in the G1 phase of the cell cycle. These results provide for the first time evidence that expression of SURF-6 is essential for mammalian cell viability, and suggest that SURF-6 might participate in the progression of cell cycle.  相似文献   

5.
Yilmaz  Şehnaz  Yoldas  Oguz  Dumani  Aysin  Guler  Gizem  Ilgaz  Seda  Akbal  Eylül  Oksuz  Hale  Celik  Ayla  Yilmaz  Bertan 《Molecular biology reports》2020,47(7):5377-5383
Molecular Biology Reports - Antimicrobial irrigation solutions are widely used under clinical settings. Their effect on dental tissue is a subject of recent research, which aims for a safer...  相似文献   

6.
Cancer cells undergo uncontrolled proliferation, and aberrant mitochondrial alterations. Tumor necrosis factor receptorassociated protein 1 (TRAP1) is a mitochondrial heat shock protein. TRAP1 mRNA is highly expressed in some cancer cell lines and tumor tissues. However, the effects of its overexpression on mitochondria are unclear. In this study, we assessed mitochondrial changes accompanying TRAP1 overexpression, in a mouse cell line, NIH/3T3. We found that overexpression of TRAP1 leads to a series of mitochondrial aberrations, including increase in basal ROS levels, and decrease in mitochondrial biogenesis, together with a decrease in peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) mRNA levels. We also observed increased extracellular signal-regulated kinase (ERK) phosphorylation, and enhanced proliferation of TRAP1 overexpressing cells. This study suggests that overexpression of TRAP1 might be a critical link between mitochondrial disturbances and carcinogenesis. [BMB Reports 2014; 47(5): 280-285]  相似文献   

7.
Nephrogenic systemic fibrosis (NSF) is a fibrosing disorder disease developed in patients with underlying renal insufficiency following exposure to gadolinium-based contrast agents (GBCAs). Previous studies have demonstrated that GdCl3 can promote NIH3T3 fibroblast cell proliferation, which provide a new clue to the role of GBCAs in the development of NSF. In the present study, we further clarify the molecular mechanism of Gd-promoted proliferation. The results showed that intervention with the Rac inhibitor NSC23766 abrogated Gd-promoted proliferation. The levels of active Rac1 significantly increased in Gd-treated cells detected by pull-down assays. In addition, the phosphorylation of Akt was significantly elevated in the treatment group, which was blocked by NSC23766. NSC23766 also reduced the migration of NIH3T3 cells enhanced by Gd. Moreover, the F-actin cytoskeleton was strengthened and the mitotic cell numbers was significantly increased after exposure to Gd. These results suggest that Rac and PI3K/Akt signaling pathways, as well as integrin-mediated signal pathway may play important roles in Gd-induced cell proliferation. In addition, under serum-free condition, Gd could decrease ROS accumulation and increase NIH3T3 cell survival.  相似文献   

8.
To identify the role of ras oncogene and p21 in the coupling mechanism of GTP-binding proteins to adenylate cyclase, we used v-Ki-ras transformed NIH/3T3 fibroblast cells. In the previous study, we investigated that NaF, cholera toxin and forskolin remarkably enhanced the adenylate cyclase activity in transformed cells compared to normal NIH/3T3 cells. In the present study, adenylate cyclase was more enhanced by GTP gamma S in transformed cells than in normal cells. It was considered that p21 plays enhancing role in coupling of GTP-binding proteins to adenylate cyclase. Further, as measured by the degree of [32P] ADP-ribosylation of GTP-binding proteins by cholera toxin and pertussis toxin respectively, the amount of Gs (46 kDa) was almost equal in both cells, while the amount of Gi (41 kDa) in transformant was about one third of that in normal cells. This difference seems to be reflected in either the biological situations or the quantities of Gi. Our data suggest that v-Ki-ras transformation resulted in the decrease of Gi protein so that the inhibitory regulation on adenylate cyclase relatively becomes low and then stimulatory influence of Gs seems to be enhanced.  相似文献   

9.
The family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) is responsible for initiating mucin-type O-linked glycosylation in higher eukaryotes. To begin to examine the biological role of O-linked glycosylation, mammalian cells were treated with a small molecule inhibitor (designated 1-68A, Ref. 15) of ppGaNTase activity. NIH3T3 cells exposed to the inhibitor were shown to undergo a significant reduction in cell surface O-glycosylation as detected by staining with jacalin and peanut agglutinin lectins after 30 min of treatment; no reduction in staining using antibodies to O-linked N-acetylglucosamine or the lectin concanavalin A was detected. Apoptosis was also observed in treated cells after 45 min of exposure, ostensibly following the O-glycosylation reduction. Overexpression of several different ppGaNTase isoforms restored cell surface O-glycosylation and rescued inhibitor-induced apoptosis. Additionally, mouse embryonic mandibular organ cultures exposed to 1-68A developed abnormally, presumably because of epithelial and mesenchymal apoptosis that followed a reduction in jacalin and peanut agglutinin staining. Our studies suggest that mucin-type O-linked glycosylation may be required for normal development and that ppGaNTases may play a role in the regulation of apoptosis.  相似文献   

10.
11.
Pyrrolidine dithiocarbamate (PDTC) is a metal chelating compound that can exert either pro-oxidant or antioxidant effects in different situations. Several studies demonstrate that it can inhibit cyclooxygenase-2 (COX-2) expression, which may be due to its antioxidant activity. Here, we found that PDTC rather increased COX-2 expression in NIH 3T3. The increase of COX-2 expression was inhibited by adding bathocuproline disulfonic acid, a non-permeable specific copper chelator, in the incubation medium. This result suggests that PDTC exerts its effect by transporting redox-active copper ions into the cells. In support of this observation, PDTC did not induce COX-2 expression in a serum-free environment. When PDTC was added with copper in the serum-free medium, it acted as the inducer of COX-2 expression. In addition, pretreatment of N-acetyl-L-cystein or dithiothreitol, other antioxidants, inhibited the PDTC-induced COX-2 expression. Our data indicate that PDTC induces COX-2 expression in NIH 3T3 cells, which may be due to its activities as a copper chelator and a pro-oxidant.  相似文献   

12.
In the present study, we demonstrated that gadolinium-containing particles formed in cell culture medium acted as a biologically active entity to mediate cell cycle progression in NIH3T3 cells. The particles were observed to accumulate at the cell surface by scanning electron microscopy. Energy-dispersive X-ray analysis was undertaken and confirmed that gadolinium was incorporated in the agglomerated particles. Moreover, the smaller gadolinium particles exhibited a stronger cell-cycle-promoting effect than the larger ones, but they shared the common signaling pathways. Both extracellular signal regulated kinase and phosphatidylinositol 3-kinase signaling pathways were activated by gadolinium-containing particles and may account for their proliferation-promoting effect on NIH3T3 cells. Furthermore, the study showed that the free gadolinium ion released from gadolinium-containing particles may be responsible for the proliferation effect. This study will be helpful to clarify the biological effect of the insoluble species formed from Gd3+ as well as other multivalent metal ions under physiological conditions and will help to improve their medical applications.  相似文献   

13.
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.  相似文献   

14.
To determine the relationship between cellular uptake of cadmium and content of metallothionein, we measured uptake of 109Cd in cells that differed in content of metallothionein (MT). MT cells were derived from NIH/3T3 cells by transfection with a plasmid containing the genome of bovine papilloma virus and the mouse metallothionein-I gene, driven by the promotor for the glucose-regulated protein of 78 kDa. Control cells were similarly transfected with bovine papilloma virus-based plasmids with the gene for metallothionein inverted and thus separated from the promoter (TM), or deleted, along with the promoter (BPA). The number of copies of bovine papilloma virus-based plasmids was similar in MT, TM, and BPA cells, approximately 100 per cell. MT cells were more than 10 times more resistant to the lethal effect of cadmium than were the control cells. Synthesis of metallothionein was 15-fold greater in the MT cells than in the TM or BPA cells. The uptake of 109Cd by the cells enriched in metallothionein was 4-fold less than by the control cells. These data suggest that an increased content of metallothionein may protect some cells from the toxic effects of cadmium, in part, by diminishing uptake of the metal.  相似文献   

15.
This study investigated the role of oncogenic H-Ras in DNA repair capacity in NIH3T3 cells. Expression of dominant-positive H-Ras (V12-H-Ras) enhanced the host cell reactivation of luciferase activity from UV-irradiated and cisplatin-treated plasmids and also increased the unscheduled DNA synthesis following cisplatin or UV treatment of cells. This observed enhancement of DNA repair capacity was inhibited by transient transfection with dominant-negative H-Ras (N17-H-Ras) or Rac1 (N17-Rac1) plasmids. Moreover, stable transfection of dominant-positive Rac1 (V12-Rac1) further enhanced DNA repair capacity. Because reactive oxygen species (ROS) are known to be a downstream effector of oncogenic Ras, we examined the role of ROS in DNA repair capacity. We found that ROS production by V12-H-Ras expression was mediated by the Ras/phosphatidylinositol 3-kinase (PI3K)/Rac1/NADPH oxidase-dependent pathway and that pretreatment of V12-H-Ras-transformed cells with an antioxidant (N-acetylcysteine) and an NADPH oxidase inhibitor (diphenyleneiodonium) decreased DNA repair capacity. Similarly, treatment with PI3K inhibitors (wortmannin and LY294002) inhibited the ability of oncogenic H-Ras to enhance DNA repair capacity. Furthermore, inhibition of the Ras/PI3K/Rac1/NADPH oxidase pathway resulted in increased sensitivity to cisplatin and UV in V12-H-Ras-expressing NIH3T3 cells. Taken together, these results provide evidence that oncogenic H-Ras activates DNA repair capacity through the Ras/PI3K/Rac1/NADPH oxidase-dependent pathway and that increased ROS production via this signaling pathway is required for enhancement of the DNA repair capacity induced by oncogenic H-Ras.  相似文献   

16.
The protein kinase domains of mouse A-Raf and B-Raf were expressed as fusion proteins with the hormone binding domain of the human estrogen receptor in mammalian cells. In the absence of estradiol, 3T3 and rat1a cells expressing delta A-Raf:ER and delta B-Raf:ER were nontransformed, but upon the addition of estradiol the cells became oncogenically transformed. Morphological oncogenic transformation was more rapid and distinctive in cells expressing delta B-Raf:ER compared with cells expressing delta A-Raf:ER. Biochemical analysis of cells transformed by delta A-Raf:ER and delta B-Raf:ER revealed several interesting differences. The activation of delta B-Raf:ER consistently led to the rapid and robust activation of both MEK and p42/p44 MAP kinases. By contrast, the activation of delta A-Raf:ER led to a weak activation of MEK and the p42/p44 MAP kinases. The extent of activation of MEK in cells correlated with the ability of the different Raf kinases to phosphorylate and activate MEK1 in vitro. delta B-Raf:ER phosphorylated MEK1 approximately 10 times more efficiently than delta Raf-1:ER and at least 500 times more efficiently than delta A-Raf:ER under the conditions of the immune-complex kinase assays. These results were confirmed with epitope-tagged versions of the Raf kinase domains expressed in insect cells. The activation of all three delta Raf:ER proteins in 3T3 cells led to the hyperphosphorylation of the resident p74raf-1 and mSOS1 proteins, suggesting the possibility of "cross-talk" between the different Raf kinases and feedback regulation of intracellular signaling pathways. The activation of either delta B-Raf:ER or delta Raf-1:ER in quiescent 3T3 cells was insufficient to promote the entry of the cells into DNA synthesis. By contrast, the activation of delta A-Raf:ER in quiescent 3T3 cells was sufficient to promote the entry of the cells into S phase after prolonged exposure to beta-estradiol. The delta Raf:ER system has allowed us to reveal significant differences between the biological and biochemical properties of oncogenic forms of the Raf family of protein kinases. We anticipate that cells expressing these proteins and other estradiol-regulated protein kinases will be useful tools in future attempts to unravel the complex web of interactions involved in intracellular signal transduction pathways.  相似文献   

17.
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations.  相似文献   

18.
A range of debilitating human diseases is known to be associated with the formation of stable highly organized protein aggregates known as amyloid fibrils. The early prefibrillar aggregates behave as cytotoxic agents and their toxicity appears to result from an intrinsic ability to impair fundamental cellular processes by interacting with cellular membranes, causing oxidative stress and increase in free Ca2+ that lead to apoptotic or necrotic cell death. However, specific signaling pathways that underlie amyloid pathogenicity remain still unclear. This work aimed to clarify cell impairment induced by amyloid aggregated. To this end, we used a combined proteomic and one‐dimensional 1H‐NMR approach on NIH‐3T3 cells exposed to prefibrillar aggregates from the amyloidogenic apomyoglobin mutant W7FW14F. The results indicated that cell exposure to prefibrillar aggregates induces changes of the expression level of proteins and metabolites involved in stress response. The majority of the proteins and metabolites detected are reported to be related to oxidative stress, perturbation of calcium homeostasis, apoptotic and survival pathways, and membrane damage. In conclusion, the combined proteomic and 1H‐NMR metabonomic approach, described in this study, contributes to unveil novel proteins and metabolites that could take part to the general framework of the toxicity induced by amyloid aggregates. These findings offer new insights in therapeutic and diagnostic opportunities. J. Cell. Physiol. 228: 1359–1367, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A flat revertant, R1, was isolated from human activated c-Ha-ras-1 (hu-ac-Ha-ras) gene-transformed NIH 3T3 cells (EJ-NIH 3T3) treated with mutagens. R1 contained unchanged transfected hu-ac-Ha-ras DNA and expressed high levels of hu-ac-Ha-ras-specific mRNA and p21 protein. Transfection experiments revealed that NIH 3T3 cells could be transformed by DNA from R1 cells but R1 cells could not be retransformed by Kirsten sarcoma virus, DNA from EJ-NIH 3T3 cells, hu-ac-Ha-ras, v-src, v-mos, simian virus 40 large T antigen, or polyomavirus middle T antigen. Somatic cell hybridization studies showed that R1 was not retransformed by fusion with NIH 3T3 cells and suppressed anchorage independence of EJ-NIH 3T3 and hu-ac-Ha-ras gene-transformed rat W31 cells in soft agar. These results suggest that the reversion and resistance to several oncogenes in R1 is due not to cellular defects in the production of the transformed phenotype but rather to enhancement of cellular mechanisms that suppress oncogenic transformation.  相似文献   

20.
By use of indirect immunofluorescence it was shown that the phosphatidylinositol transfer protein (PI-TP) in 3T3 mouse fibroblast cells is associated with the Golgi system. This was concluded from double-labeling experiments with TRITC-labeled Ricin which binds to sugar residues that are specifically processed in the Golgi system. Independent evidence for this association was provided by the fact that dissociation of the Golgi system by brefeldin A was reflected in an extensive redistribution of PI-TP labeling. In addition, PI-TP is localized in the cytoplasm and in the nucleus. In exponentially growing cells an enhanced labeling of PI-TP was observed in the cytosol and in the cytosol and in the Golgi system in comparison with quiescent cells. By Western blot analysis and by transfer activity assays, it was confirmed that the concentration of PI-TP was increased in exponentially growing cells. These results strongly suggest that PI-TP fulfills a role in the functioning of the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号