首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen processing in the hyporheic zone of a pastoral stream   总被引:4,自引:1,他引:4  
The distribution of nitrogen-transforming processes, and factors controlling their rates, were determined within the hyporheic zone of a lowland stream draining agricultural land. In the field, physicochemical parameters were measured along a 10m-long hyporheic flow line between downwelling and upwelling zones. Sediment cores were retrieved from the stream bed surface, and from 20, 40 and 60cm deep in each zone, and in the laboratory, water from the corresponding depth was percolated through each core at the natural flow rate. Concentrations of nitrogen species and oxygen were measured before and after flow through each core. Denitrification was measured using a 15N-nitrate tracer. Shallow and downwelling zone samples were clearly distinct from deeper and upwelling zone samples in terms of physicochemical conditions, microbial processes and factors controlling nitrogen processing. Denitrification was highest in surface and downwelling zone cores, despite high oxygen levels, probably due to high pore-water nitrate concentrations in these cores and isolation of the denitrifying bacteria from oxygen in the bulk water by the hyporheic biofilms. Denitrification was limited by oxygen inhibition in the downwelling group, and by nitrate availability in the upwelling group. Strong evidence indicated that dissimilatory nitrate reduction to ammonium, occurred in almost all cores, and outcompeted denitrification for nitrate. In contrast, nitrification was undetectable in all but two cores, probably because of intense competition for oxygen. Field patterns and lab experiments indicated that the hyporheic zone at this moderately N-rich site is a strong sink for nitrate, fitting current theories that predict where hyporheic zones are nitrate sinks or nitrate sources.  相似文献   

2.
The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel.  相似文献   

3.
The dynamics of in situ bacterial communities in the hyporheic zone of an intermittent stream were described in high spatiotemporal detail. We assessed community dynamics in stream sediments and interstitial pore water over a two-year period using terminal-restriction fragment length polymorphism. Here, we show that sediments remained saturated despite months of drought and limited hydrologic connectivity. The intermittency of stream surface water affected interstitial pore water communities more than hyporheic sediment communities. Seasonal changes in bacterial community composition was significantly associated with water intermittency, phosphate concentrations, temperature, nitrate and dissolved organic carbon (DOC) concentrations. During periods of low- to no-surface water, communities changed from being rich in operational taxonomic units (OTUs) in isolated surface pools, to a few OTUs overall, including an overall decline in both common and rare taxa. Individual OTUs were compared between porewater and sediments. A total of 19% of identified OTUs existed in both porewater and sediment samples, suggesting that bacteria use hyporheic sediments as a type of refuge from dessication, transported through hydrologically connected pore spaces. Stream intermittency impacted bacterial diversity on rapid timescales (that is, within days), below-ground and in the hyporheic zone. Owing to the coupling of intermittent streams to the surrounding watershed, we stress the importance of understanding connectivity at the pore scale, consequences for below-ground and above-ground biodiversity and nutrient processing, and across both short- and long-time periods (that is, days to months to years).  相似文献   

4.
1. Feedbacks between vegetation and geomorphic processes can generate alternative stable states and other nonlinear behaviours in ecological systems, but the consequences of these biogeomorphic interactions for other ecosystem processes are poorly understood. In this study, we describe the changes in the hydrological, geomorphic and biogeochemical characteristics of the hyporheic zone of a Sonoran desert stream (Sycamore Creek, Arizona, U.S.A.) in response to a transition from an unvegetated gravel‐bed state to densely vegetated wetlands (ciénegas). 2. A survey of the entire length of Sycamore Creek indicated that ciénegas occupied c. 18% of the stream, and were disproportionately represented in constrained canyons rather than wide, unconstrained valleys. 3. Vegetated patches were characterized by low concentrations of dissolved oxygen (DO) and nitrate and high concentrations of carbon dioxide and methane in the hyporheic zone. In contrast to unvegetated areas, hyporheic DO in ciénegas exhibited no relationship with vertical hydraulic gradients. 4. Increases in hyporheic DO following removal of vegetation by floods supports the hypothesis that these reduced conditions were the result of biogeochemical and geomorphic changes associated with vegetation establishment. In locations where vegetation persisted, hyporheic DO exhibited no response to flooding; in sections where vegetation was removed hyporheic DO closely tracked post‐flood increases in surface stream DO. 5. Shallow sediments in vegetated patches were finer and more organic‐rich than in unvegetated patches, due to increased deposition during floods. Conservative tracer additions indicated that hydrological exchange between the surface stream and hyporheic zone was much lower in ciénegas than in gravel‐bed reaches. 6. Vegetation establishment in desert streams not only alters the physical and chemical characteristics of the hyporheic zone, but also the nature of interactions between surface and hyporheic subsystems.  相似文献   

5.
Packman  Aaron I.  Salehin  Mashfiqus 《Hydrobiologia》2003,494(1-3):291-297
Hyporheic exchange is often controlled by subsurface advection driven by the interaction of the stream with sedimentary pore water. The nature and magnitude of the induced exchange flow is dependent on the characteristics of both the stream flow and the sediment bed. Fundamental hydrodynamic theory can be applied to determine general relationships between stream characteristics, sediment characteristics, and hyporheic exchange rates. When the stream bed is fine enough to allow application of Darcy's Law, as with sand beds, the induced advective exchange can be calculated from fundamental hydrodynamic principles. Comparison with a wide range of experimental results demonstrates the predictive capability of this theory. Coarser sediments such as gravels are more complex because they admit turbulent interactions between the stream and subsurface flows, which can produce considerable exchange even when the bed surface is flat and no flows are induced by the bed topography. Even for this case, however, scaling arguments can still be used to determine how exchange rates vary with stream and sedimentary conditions. Evaluation of laboratory flume experiments for a wide range of stream conditions, bed sediment types including sand and gravel, and bed geometries demonstrates that exchange scales with the permeability of the bed sediments and the square of the stream velocity. These relationships occur due to fundamental hydrodynamic processes, and were observed to hold over almost five orders of magnitude of exchange flux. Such scaling relationships are very useful in practice because they can be used to extend observed hyporheic exchange rates to different flow conditions and to uniquely identify the role of sedimentary conditions in controlling exchange flux.  相似文献   

6.
Martin Pusch 《Hydrobiologia》1996,323(2):107-118
Community respiration in hyporheic sediments (HCR) was studied in a characteristic riffle-pool-sequence of a mountain stream. HCR activity at the riffle site strongly exceeded that at the corresponding pool site with a mean ratio of 5.3. The vertical distribution of HCR activity was homogeneous in the pool, while there was a distinct maximum in the uppermost layer in the riffle. Similarly, the spatial distribution of certain fractions of particulate organic matter (POM), and their turnover, was largely determined by stream morphology. Mean annual HCR per unit area of stream bed was estimated as 1.71 g O2 m−2 d−1. Hence, HCR contributes significantly to total heterotrophic activity in streams, thus enhancing the relative importance of heterotrophic processes in running waters containing hyporheic zones.  相似文献   

7.
1. We investigated the effects of a flood on the fauna and physical habitat of the hyporheic zone of the Kye Burn, a fourth order gravel‐bed stream in New Zealand. 2. Freeze core hyporheic samples (to 50 cm depth) and benthic samples (to 10 cm) were taken, along with measurements of vertical hydrological gradient, before, 2 days after and 1 month after the flood (estimated return period: 1.5 years, estimated Qmax = 10.4 m3 s?1). 3. The composition of the hyporheos differed over the three sampling occasions with fewer taxa collected immediately postflood than preflood. The equitability of the community was higher on both postflood occasions, consistent with the reduced densities of two abundant taxa (Leptophlebiidae and Copepoda). 4. Total invertebrate abundance was lower on the postflood occasions than preflood in both benthic (0–10 cm) and hyporheic (10–50 cm) sediments. Several taxa, including asellotan isopods and amphipods, recovered within 1 month of the event. Hyporheic densities of larval Hydora and nematodes did not differ among the three sampling occasions, but the water mite Pseudotryssaturus was more abundant 1 month after the flood than preflood. There was no evidence of vertical movements (to 50 cm) by any taxa in response to the flood. 5. The proportion of fine sediments (<1 mm) in the subsurface sediments (10–50 cm) increased over the three sampling occasions and median particle size declined, but sediment porosity did not change. More particulate organic matter was found in the sediments after the flood. 6. Our study provides little evidence that the hyporheic zone (to 50 cm) acted as a significant refuge during the flood event, although movements to or recolonisation from sediments deeper than 50 cm could explain the recovery of many crustacean and mite taxa within 1 month.  相似文献   

8.
Water and dissolved nitrogen flows through the hyporheic zone of a 3rd-order mountain stream in Hokkaido, northern Japan were measured during a small storm in August 1997. A network of wells was established to measure water table elevations and to collect water samples to analyze dissolved nitrogen concentrations. Hydraulic conductivity and the depth to bedrock were surveyed. We parameterized the groundwater flow model, MODFLOW, to quantify subsurface flows of both stream water and soil water through the hyporheic zone. MODFLOW simulations suggest that soil water inflow from the adjacent hill slope increased by 1.7-fold during a small storm. Dissolved organic nitrogen (DON) and ammonium (NH 4 + ) in soil water from the hill slope were the dominant nitrogen inputs to the riparian zone. DON was consumed via mineralization to NH 4 + in the hyporheic zone. NH 4 + was the dominant nitrogen species in the subsurface, and showed a net release during both base and storm flow. Nitrate appeared to be lost to denitrification or immobilized by microorganisms and/or vegetation in the riparian zone. Our results indicated that the riparian and hyporheic system was a net source of NH 4 + to the stream.  相似文献   

9.
Along a single stream riffle, there is a typical flow pattern in which surface water enters the hyporheic zone in a downwelling zone at the head of the riffle and hyporheic water returns to the stream surface in an upwelling zone at the tail of the riffle. Distinct patterns of physical and chemical conditions in the hyporheic zone are likely to determine patterns of microbial activity and occurrence of hyporheic fauna. Interstitial water and core samples were taken at three depths in the downwelling and upwelling zones of a single riffle in the Speed River, Southern Ontario, Canada. Physical and chemical characteristics of the hyporheic water, bacterial density, protein content, detritus content and faunal composition of the hyporheic sediment were analysed. The downwelling and upwelling zones differed significantly in temperature, pH, redox potential, dissolved oxygen and nitrate with significant positive correlations occurring among the latter three. There were no differences in bacterial density or detritus content between the two zones nor between depths in either zone, but protein content, considered to be a measure of biofilm biomass, was significantly higher in the downwelling zone. Total density of hyporheic fauna and the number of taxa decreased with increasing depth in both upwelling and downwelling zones, and were positively correlated with surface water characteristics (oxygen, temperature and nitrate), sediment protein content and detritus; however, only a weak correlation was found with zone. The composition of taxa differed between the two zones, and faunal distribution was correlated with dissolved oxygen, detritus, protein content and depth.  相似文献   

10.
Rates of bacteria ingestion by interstitial ciliates were estimated and compared to bacterial biomass and production. Investigation was carried out in the hyporheic zone of a lowland stream. FISH was applied to quantitatively determine bacteria within the ciliate's food vacuoles. To estimate bacteria ingestion rates using FISH, we had to strike a new path. When numbers of bacteria in the food vacuoles remains constant with time (bacterial digestion and ingestion are at equilibrium), ingestion rate can be estimated based on the digestion time and the average number of bacteria per cell. Ciliate community was predominantly composed of bacterivorous ciliates. FISH-signals deriving from ingested bacteria were detected in Cinetochilum margaritaceum, 'other small scuticociliates', Pleuronema spp., and Vorticella spp. Ingestion rates for these taxa were 78, 150, 86, and 38 bacteria ind(-1) h(-1), respectively. The grazing impacts on bacterial biomass and carbon production were calculated based on these ingestion rates. Ciliate grazing caused a decrease in bacterial biomass of 0.024% day(-1) and in bacterial carbon production of 1.60%. These findings suggest that interstitial ciliate grazing impact on bacteria biomass and production was too low to represent an important link in the carbon flow of the hyporheic zone under study.  相似文献   

11.
The objective of this study was to examine chemical changes in porewaters that occur over small scales (cm) as groundwater flows through the hyporheic zone and discharges to a stream in a temperate forest of northern Wisconsin. Hyporheic-zone porewaters were sampled at discrete depths of 2, 10, 15, 61, and 183 cm at three study sites in the study basin. Chemical profiles of dissolved organic carbon (DOC), CO2, CH4, and pH show dramatic changes between 61 cm sediment depth and the water-sediment interface. Unless discrete samples at small depth intervals are taken, these chemical profiles are not accounted for. Similar trends were observed at the three study locations, despite each site having very different hydraulic-flow regimes. Increases in DOC concentration by an order of magnitude from 61 to 15 cm depth with a corresponding decrease in pH and rapid decreases in the molecular weight of the DOC suggest that aliphatic compounds (likely organic acids) are being generated in the hyporheic zone. Estimated efflux rates of DOC, CO2, and CH4 to the stream are 6.2, 0.79, 0.13 moles m2 d-1, respectively, with the vast majority of these materials produced in the hyporheic zone. Very little of these materials are accounted for by sampling stream water, suggesting rapid uptake and/or volatilization.  相似文献   

12.
Summary 1. We studied the relative contributions of the magnitude and direction of vertical hydrological exchange, subsurface sediment composition and interstitial physicochemistry in determining the distribution of hyporheic invertebrates in the Kye Burn, a fourth order gravel‐bed stream in New Zealand. 2. In winter 2000 and summer 2001, we measured vertical hydrological gradient (VHG), dissolved oxygen, water temperature and water chemistry using mini‐piezometers, each installed in a different upwelling or downwelling zone. Next to every piezometer, a freeze core sample was taken to quantify the sediment, particulate organic matter and invertebrates. 3. Dissolved oxygen concentration at 25 cm was high on both occasions (>9 mg L?1) but was higher in winter than summer. Interstitial water temperature was higher in down than upwellings and was substantially higher in summer than winter. Other features of the subsurface sediments and interstitial nitrate–nitrite concentrations were similar on both occasions and in up and downwellings. Interstitial ammonium and soluble reactive phosphorous concentrations were higher in winter than summer and ammonium was higher in up than downwelling areas. 4. The proportion of fine sediment (63 μm–1 mm), sediment heterogeneity and VHG accounted for the greatest proportion of variance in invertebrate distributions in both summer and winter. 5. The hyporheos was numerically dominated by early instar leptophlebiid mayfly nymphs and asellotan isopods. Water mites were a taxonomically diverse group with 13 genera. Taxonomic diversity (Shannon–Weaver), but not taxon richness, was higher in upwelling areas, reflecting lower numerical dominance by a few taxa in these locations. 6. Sediment composition (particularly the amount of fine sediments) and vertical hydrological exchange determined the composition and distribution of the hyporheos. Patchiness in these factors is important in planning sampling regimes or field manipulations in the hyporheic zone.  相似文献   

13.
1. Leaf litter constitutes the major source of organic matter and energy in woodland stream ecosystems. A substantial part of leaf litter entering running waters may be buried in the streambed as a consequence of flooding and sediment movement. While decomposition of leaf litter in surface waters is relatively well understood, its fate when incorporated into river sediments, as well as the involvement of invertebrate and fungal decomposers in such conditions, remain poorly documented. 2. We tested experimentally the hypotheses that the small interstices of the sediment restrict the access of the largest shredders to buried organic matter without compromising that of aquatic hyphomycetes and that fungal decomposers in the hyporheic zone, at least partly, compensate for the role of invertebrate detritivores in the benthic zone. 3. Alder leaves were introduced in a stream either buried in the sediment (hyporheic), buried after 2 weeks of exposure at the sediment surface (benthic‐hyporheic), or exposed at the sediment surface for the entire experiment (benthic). Leaf decomposition was markedly faster on the streambed surface than in the two other treatments (2.1‐ and 2.8‐fold faster than in the benthic‐hyporheic and hyporheic treatments, respectively). 4. Fungal assemblages were generally less diverse in the hyporheic habitat with a few species tending to be relatively favoured by such conditions. Both fungal biomass and sporulation rates were reduced in the hyporheic treatment, with the leaves subject to the benthic‐hyporheic treatment exhibiting an intermediate pattern. The initial 2‐week stage in the benthic habitat shaped the fungal assemblages, even for leaves later subjected to the hyporheic conditions. 5. The abundance and biomass of shredders drastically decreased with burial, except for Leuctra spp., which increased and was by far the most common leaf‐associated taxon in the hyporheic zone. Leuctra spp. was one of the rare shredder taxa displaying morphological characteristics that increased performance within the limited space of sediment interstices. 6. The carbon budgets indicated that the relative contributions of the two main decomposers, shredders and fungi, varied considerably depending on the location within the streambed. While the shredder biomass represented almost 50% of the initial carbon transformed after 80 days in the benthic treatment, its contribution was <0.3% in the hyporheic one and 2.0% in the combined benthic‐hyporheic treatment. In contrast, mycelial and conidial production in the permanently hyporheic environment accounted for 12% of leaf mass loss, i.e. 2–3 times more than in the two other conditions. These results suggest that the role of fungi is particularly important in the hyporheic zone. 7. Our findings indicate that burial within the substratum reduces the litter breakdown rate by limiting the access of both invertebrate and fungal decomposers to leaves. As a consequence, the hyporheic zone may be an important region of organic matter storage in woodland streams and serve as a fungal inoculum reservoir contributing to further dispersal. Through the temporary retention of litter by burial, the hyporheic zone must play a significant role in the carbon metabolism and overall functioning of headwater stream ecosystems.  相似文献   

14.
1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream‐downstream gradient of increasing temperature and groundwater contribution to river flow. 2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis. 3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C. 4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time. 5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species‐rich habitats that added many species to the community of the main channel.  相似文献   

15.
We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.  相似文献   

16.
SUMMARY. 1. A series of samples of interstitial water and fauna was taken along transects from the channel into the bank in two small rivers in southern Ontario, Canada. These were examined for any discontinuities which might indicate the position of the hyporheic/groundwater interface. 2. There were several chemical discontinuities in Duffin Greek, with “break lines” occurring from about the river margin obliquely downwards under the bank for dissolved oxygen and carbon dioxide, B.O.D., alkalinity, suspended solids and amount of organic matter. Break lines in nitrate and sulphide concentration ran from near the margin obliquely down under the river bed. In the Rouge River, a discontinuity extending from a point approximately 1.5 m landwards from the margin obliquely down under the river was indicated by dissolved carbon dioxide, B.O.D., conductivity, suspended solids, organic matter, nitrate and alkalinity. 3. Ordination (DECORANA) and community classification (TWIN-SPAN) revealed that, in both rivers, linear distance from mid-river was the major factor associated with community structure. In both rivers the community under the bank was distinct from the river community and these two communities were separated by another community characteristic of the river margin. In Duffin Creek the classification procedure additionally discriminated surface and interstitial sub-sets within the river community. 4. Most taxa showed no significant correlations with the chemistry of the interstitial water but. in Duffin Creek, the densities of the copepod Diacyclops crasscaudis brachycercus (Kiefer) and Oligochaeta were positively correlated with nitrate: worms were also negatively correlated with sulphide. In the Rouge River, density of hyporheic animals was negatively correlated with both conductivity and alkalinity of interstitial water; oligochactes were positively correlated with both nitrate and organic matter; and density of nematodes was positively correlated with sulphide concentration. 5. The hyporheic faunas of these two rivers were dominated by insects, particularly chironomids. Compared with the hyporheos of rivers in Europe and Colorado, the two Ontario rivers lack significant numbers of harpacticoid copepods as well as bathynellacid, amphipod and isopod crustaceans.  相似文献   

17.
1. A method for quantifying interstitial water velocity based on the dissolution rate of plaster of Paris standards was developed as part of a study of vertical, longitudinal (1–4 order sites) and seasonal variation in the biotic and physical characteristics of the shallow hyporheic zone (0–30 cm) of a headwater stream system in West Virginia, U.S.A.
2. A calibration model was developed using a water velocity simulation tank to relate mass loss of plaster standards to water velocity and temperature. The model was then used to calculate water velocity through artificial substrata embedded in the shallow hyporheic zone of four stream reaches based on in situ mass loss of plaster standards.
3. Water velocity in the hyporheic zone increased with stream order, was highest in early spring and winter during high stream base flows, and decreased with depth into the substratum. There was a strong interaction between depth and season: during periods of high stream discharge, water velocity through the upper level of the shallow hyporheic zone (0–10 cm into the substrate) increased disproportionately more than velocity at greater depths. Mean interstitial velocity in March ranged from 0 cm s–1 in the lowest level (20–30 cm) to 3.5 cm s–1 at the upper level (0–10 cm) at the first‐order site, and from 2.5 cm s–1 (20–30 cm) to 9.5 cm s–1 (0–10 cm s–1) at the fourth‐order site. Gradients in stream discharge and sediment permeability accounted for treatment effects.
4. Use of calibrated data improved the ability to resolve among‐season differences in interstitial water movement over the use of uncalibrated mass loss data. For some applications of the plaster standard method, empirical calibration may not be necessary.  相似文献   

18.
Both β-proteobacterial aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (ANAMMOX) bacteria were investigated in the hyporheic zone of a contaminated river in China containing high ammonium levels and low chemical oxygen demand. Fluorescence in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and cloning-sequencing were employed in this study. FISH analysis illustrated that AOB (average population of 3.5?%) coexisted with ANAMMOX bacteria (0.7?%). The DGGE profile revealed a high abundance and diversity of bacteria at the water-air-soil interface rather than at the water-soil interface. The redundancy analysis correlated analysis showed that the diversity of ANAMMOX bacteria was positively related to the redox potential. The newly detected sequences of ANAMMOX organisms principally belonged to the genus Candidatus "Brocadia", while most ammonia monooxygenase subunit-A gene amoA sequences were affiliated with Nitrosospira and Nitrosomonas. These results suggest that the water-air-soil interface performs an important function in the nitrogen removal process and that the bioresources of AOB and ANAMMOX bacteria can potentially be utilized for the eutrophication of rivers.  相似文献   

19.
Perspectives and predictions on the microbial ecology of the hyporheic zone   总被引:4,自引:0,他引:4  
1. Studies of hyporheic microbial ecology have suggested an important role for hyporheic microbial processes in stream ecosystem functioning. Using evidence from microbial communities in other aquatic habitats, some predictions are made concerning the diversity of microbial types and microbial processes likely to occur in the hyporheic zone, and the relative importance of these various types to the hyporheic ecosystem. 2. It is predicted that the biofilm growth form of interstitial micro-organisms will create a variety of microniches, allowing coexistence of a great diversity of microbial types, and promoting the activity of some otherwise poor competitors. It is further predicted that the confluence of reduced groundwaters and aerobic surface waters will favour chemolithotrophic processes in the hyporheic zone, but that these will contribute significantly to hyporheic production only if surface water is very low in dissolved organic carbon, or the groundwater is extremely reduced, such as by the influence of riparian wetlands. A variety of anaerobic respiratory pathways, such as nitrate, ferric ion, sulphate and even methanogenic respiration will be employed in the hyporheic zone, with biofilm dynamics permitting these to occur even in aerobic sediments. Anaerobic pathways may account for a significant proportion of total hyporheic organic matter mineralization. 3. The role of fungi in hyporheic dynamics is, as yet, almost completely unstudied. However, it is expected that they will be important in breaking down buried particulate organic matter (POM), which may account for a large proportion of total stream POM. 4. Physicochemical conditions in hyporheic sediments appear to be highly heterogeneous, and this heterogeneity may be very important in the cycling of certain nutrients, especially nitrogen, which involves a series of steps requiring different conditions. 5. Various new techniques are now available by which biofilm dynamics and in situ microbial processes may be measured. Studies are recommended of intact microbial communities both at the microscale of the biofilm and at the scale of the heterogeneities occurring in hyporheic sediments. Studies are needed that measure actual rates of microbial processes under in situ conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号