共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
3.
4.
Involvement of Schizosaccharomyces
pombe Srs2 in cellular responses to DNA damage 总被引:1,自引:0,他引:1 下载免费PDF全文
Shao-Win Wang Adele Goodwin Ian
D. Hickson Chris
J. Norbury 《Nucleic acids research》2001,29(14):2963-2972
In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes. Saccharomyces cerevisiae cells lacking both Srs2 and Sgs1 exhibit a severe growth defect. We have identified an Srs2 orthologue in the fission yeast Schizosaccharomyces pombe, and have investigated its role in responses to UV irradiation and inhibition of DNA replication. Deletion of fission yeast srs2 caused spontaneous hyper-recombination and UV sensitivity, and simultaneous deletion of the SGS1 homologue rqh1 caused a severe growth defect reminiscent of that seen in the equivalent S.cerevisiae mutant. However, unlike in budding yeast, inactivation of the homologous recombination pathway did not suppress this growth defect. Indeed, the homologous recombination pathway was required for maintenance of normal fission yeast viability in the absence of Srs2, and loss of homologous recombination and loss of Srs2 contributed additively to UV sensitivity. We conclude that Srs2 plays related, but not identical, roles in the two yeast species. 相似文献
5.
Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation 下载免费PDF全文
The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Delta mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Delta mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response. 相似文献
6.
7.
Lambert S Mason SJ Barber LJ Hartley JA Pearce JA Carr AM McHugh PJ 《Molecular and cellular biology》2003,23(13):4728-4737
Drugs that produce covalent interstrand cross-links (ICLs) in DNA remain central to the treatment of cancer, but the cell cycle checkpoints activated by ICLs have received little attention. We have used the fission yeast, Schizosaccharomyces pombe, to elucidate the checkpoint responses to the ICL-inducing anticancer drugs nitrogen mustard and mitomycin C. First we confirmed that the repair pathways acting on ICLs in this yeast are similar to those in the main organisms studied to date (Escherichia coli, budding yeast, and mammalian cells), principally nucleotide excision repair and homologous recombination. We also identified and disrupted the S. pombe homologue of the Saccharomyces cerevisiae SNM1/PSO2 ICL repair gene and found that this activity is required for normal resistance to cross-linking agents, but not other forms of DNA damage. Survival and biochemical analysis indicated a key role for the "checkpoint Rad" family acting through the chk1-dependent DNA damage checkpoint in the ICL response. Rhp9-dependent phosphorylation of Chk1 correlates with G(2) arrest following ICL induction. In cells able to bypass the G(2) block, a second-cycle (S-phase) arrest was observed. Only a transient activation of the Cds1 DNA replication checkpoint factor occurs following ICL formation in wild-type cells, but this is increased and persists in G(2) arrest-deficient mutants. This likely reflects the fraction of cells escaping the G(2) damage checkpoint and arresting in the subsequent S phase due to ICL replication blocks. Disruption of cds1 confers increased resistance to ICLs, suggesting that this second-cycle S-phase arrest might be a lethal event. 相似文献
8.
Abstract Schizosaccharomyces pombe becomes resistant to killing by high concentration of hydrogen peroxide and other severe stresses including oxidants, high temperature and high concentration of ethanol when pretreated with nonlethal levels of hydrogen peroxide. In the presence of the protein synthesis inhibitor, cycloheximide, during hydrogen peroxide pretreatment, the cell obtained partial resistance to a higher level of hydrogen peroxide. The partial resistance to hydrogen peroxide in the presence of cycloheximide was acquired within 30 min of pretreatment but complete resistance obtained with de novo protein synthesis was not attained before 45 min of pretreatment. During adaptation to hydrogen peroxide, at least 15 polypeptides are induced, as analyzed by two-dimensional gel electrophoresis. Catalase activity is induced eight-fold by treatment with a nonlethal level of hydrogen peroxide. 相似文献
9.
Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe. 总被引:2,自引:1,他引:2 下载免费PDF全文
A conserved MAP kinase cascade is central to signal transduction in both simple and complex eukaryotes. In the yeast Schizosaccharomyces pombe, Byr2, a homolog of mammalian MAPK/ERK kinase kinase and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation. A screen for S. pombe proteins that interact with Byr2 in a two-hybrid system led to the isolation of Ste4, a protein that is known to be required for sexual function. Ste4 binds to the regulatory region of Byr2. This binding site is separable from the binding site for Ras1. Both Ste4 and Ras1 act upstream of Byr2 and act at least partially independently. Ste4 contains a leucine zipper and is capable of homotypic interaction. Ste4 has regions of homology with STE50, an S. cerevisiae protein required for sexual differentiation that we show can bind to STE11. 相似文献
10.
Phosphorylation of eukaryotic initiation factor-2 (eIF2) is an important mechanism mitigating cellular injury in response to diverse environmental stresses. While all eukaryotic organisms characterized to date contain an eIF2 kinase stress response pathway, the composition of eIF2 kinases differs, with mammals containing four distinct family members and the well-studied lower eukaryote Saccharomyces cerevisiae expressing only a single eIF2 kinase. We are interested in the mechanisms by which multiple eIF2 kinases interface with complex stress signals and elicit response pathways. In this report we find that in addition to two previously described eIF2 kinases related to mammalian HRI, designated Hri1p and Hri2p, the yeast Schizosaccharomyces pombe expresses a third eIF2 kinase, a Gcn2p ortholog. To delineate the roles of each eIF2 kinase, we constructed S. pombe strains expressing only a single eIF2 kinase gene or deleted for the entire eIF2 kinase family. We find that Hri2p is the primary activated eIF2 kinase in response to exposure to heat shock, arsenite, or cadmium. Gcn2p serves as the primary eIF2 kinase induced during a nutrient downshift, treatment with the amino acid biosynthetic inhibitor 3-aminotriazole, or upon exposure to high concentrations of sodium chloride. In one stress example, exposure to H2O2, there is early tandem activation of both Hri2p and Gcn2p. Interestingly, with extended stress conditions there is activation of alternative secondary eIF2 kinases, suggesting that eukaryotes have mechanisms of coordinate activation of eIF2 kinase in their stress remediation responses. Deletion of these eIF2 kinases renders S. pombe more sensitive to many of these stress conditions. 相似文献
11.
Pearson SJ Wharton S Watson AJ Begum G Butt A Glynn N Williams DM Shibata T Santibáñez-Koref MF Margison GP 《Nucleic acids research》2006,34(8):2347-2354
Toxic and mutagenic O6-alkylguanine adducts in DNA are repaired by O6-alkylguanine-DNA alkyltransferases (MGMT) by transfer of the alkyl group to a cysteine residue in the active site. Comparisons in silico of prokaryotes and lower eukaryotes reveal the presence of a group of proteins [alkyltransferase-like (ATL) proteins] showing amino acid sequence similarity to MGMT, but where the cysteine at the putative active site is replaced by tryptophan. To examine whether ATL proteins play a role in the biological effects of alkylating agents, we inactivated the gene, referred to as atl1+, in Schizosaccharomyces pombe, an organism that does not possess a functional MGMT homologue. The mutants are substantially more susceptible to the toxic effects of the methylating agents, N-methyl-N-nitrosourea, N-methyl-N′nitro-N-nitrosoguanidine and methyl methanesulfonate and longer chain alkylating agents including N-ethyl-N-nitrosourea, ethyl methanesulfonate, N-propyl-N-nitrosourea and N-butyl-N-nitrosourea. Purified Atl1 protein does not transfer methyl groups from O6-methylguanine in [3H]-methylated DNA but reversibly inhibits methyl transfer by human MGMT. Atl1 binds to short single-stranded oligonucleotides containing O6-methyl, -benzyl, -4-bromothenyl or -hydroxyethyl-guanine but does not remove the alkyl group or base and does not cleave the oligonucleotide in the region of the lesion. This suggests that Atl1 acts by binding to O6-alkylguanine lesions and signalling them for processing by other DNA repair pathways. This is the first report describing an activity that protects S.pombe against the toxic effects of O6-alkylguanine adducts and the biological function of a family of proteins that is widely found in prokaryotes and lower eukaryotes. 相似文献
12.
Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe 总被引:1,自引:0,他引:1
As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage. 相似文献
13.
Humphrey T 《Mutation research》2000,451(1-2):211-226
14.
15.
Kenji Kitamura Tomohiro Nakamura Futaba Miki Chikashi Shimoda 《FEMS microbiology letters》1996,143(1):41-45
Abstract The mating response of the fission yeast Schizosaccharomyces pombe is mediated by mating pheromones, M-factor and P-factor, produced by h− and h+ cells, respectively. When the M-factor receptor (Map3) was ectopically expressed in h− cells lacking the P-factor receptor (Mam2), they acquired mating competence in response to M-factor which they secreted. The autocrine response to P-factor in h+ cells was so weak that mating competence was not acquired, although expression of the pheromone-responsive gene mat1-Pm was detected. These observations support the notion that the intensity of cellular response to mating pheromones is different between h− and h+ cells, although downstream pathways of the pheromone receptors are shared by the two mating types. 相似文献
16.
The transport of malate was studied in a Schizosaccharomyces pombe wild-type strain and in mutant strains unable to utilize malic acid. Two groups of such mutants, i.e., malic enzyme-deficient and malate transport-defective mutants, were differentiated by a 14C-labeled L-malate transport assay and by starch gel electrophoresis followed by activity staining for malic enzyme (malate dehydrogenase [oxaloacetate decarboxylating] [NAD+]; 1.1.1.38) and malate dehydrogenase (1.1.1.37). Transport of malate in S. pombe was constitutive and strongly inhibited by inhibitors of oxidative phosphorylation and of the formulation of proton gradients. Transport was a saturable function of the malate concentration. The apparent Km and Vmax values for transport by the parent were 3.7 mM and 40 nmol/min per mg of protein, respectively, while those of the malic enzyme-deficient mutant were 5.7 mM and 33 nmol/min per mg of protein, respectively. Malate transport was pH and temperature dependent. The specificity of transport was studied with various substrates, including mono- and dicarboxylic acids, and the possibility of a common transport system for dicarboxylic acids is discussed. 相似文献
17.
S. pombe is shown to be a powerful system for studies concerning attachment of polyisoprenoid moieties to proteins, due to its ability to take up exogenous mevalonic acid efficiently. The fission yeast can take up about 5% of the exogenously added mevalonic acid and incorporate approximately 10% of this into protein. By contrast, the uptake obtained with the budding yeast S. cerevisiae is less than 0.5%. HPLC analysis of total S. pombe protein-bound isoprenoids revealed that approximately 55% of the counts co-migrated with the geranylgeraniol standard, while approximately 45% of the counts co-migrated with farnesol. We could not detect any effects of mevinolin or other HMG-CoA reductase inhibitors in S. pombe. 相似文献
18.
G Moleroa V.J Cida C Vivara C Nombelaa M Sánchez-Péreza 《FEMS microbiology letters》1999,175(1):143-148
The Candida albicans XOG1 gene, previously shown to be a good reporter gene in Saccharomyces cerevisiae and C. albicans, was tested in Schizosaccharomyces pombe. Unlike the budding yeast, S. pombe does not produce exoglucanase activity and hence this system would be applicable to any given strain of this organism. The XOG1 gene was located under the control of the nmt1 promoter and its functionality could be demonstrated even at high temperatures (37 degrees C). The exoglucanase activity can be measured both in vivo and in vitro by either a simple biochemical reaction (on cells or media) or by flow cytometry, because the cells remain viable after the assay. 相似文献
19.
Pnk1, a DNA kinase/phosphatase required for normal response to DNA damage by gamma-radiation or camptothecin in Schizosaccharomyces pombe. 总被引:3,自引:0,他引:3
Maria Meijer Feridoun Karimi-Busheri Timothy Y Huang Michael Weinfeld Dallan Young 《The Journal of biological chemistry》2002,277(6):4050-4055
We report the characterization of Pnk1, a 45-kDa homolog of the human polynucleotide kinase PNKP in Schizosaccharomyces pombe. Recombinant Pnk1 like human PNKP exhibits both 5'-DNA kinase and 3'-DNA phosphatase activities in vitro. Furthermore, we detected 3'-DNA phosphatase activity with a single-stranded substrate in extracts from wild-type yeast, but no activity was detected in pnk1delta strains. We have shown that GFP-tagged Pnk1 like mammalian PNKP localizes to the nucleus. Deletion of pnk1 does not affect cell growth under normal conditions but results in significant hypersensitivity to gamma-radiation or camptothecin, an inhibitor of topoisomerase I, suggesting that Pnk1 plays an important role in the repair of DNA strand breaks produced by these agents. The pnk1 deletion mutants were not hypersensitive to ethyl methanesulfonate, methyl methanesulfonate, or 4-nitroquinoline N-oxide. Expression of human PNKP in pnk1delta cells restores resistance to gamma-radiation or camptothecin, suggesting that the functions of yeast Pnk1 and human PNKP have been conserved. 相似文献
20.
This review is concerned with repair and tolerance of UV damage in the fission yeast, Schizosaccharomyces pombe and with the differences between Sch. pombe and budding yeast, Saccharomyces cerevisiae in their response to UV irradiation. Sch. pombe is not as sensitive to ultra-violet radiation as Sac. cerevisiae nor are any of its mutants as sensitive as the most sensitive Sac. cerevisiae mutants. This can be explained in part by the fact that Sch. pombe, unlike budding yeast or mammalian cells, has an extra pathway (UVER) for excision of UV photoproducts in addition to nucleotide excision repair (NER). However, even in mutants lacking this additional pathway, there are significant differences between the two yeasts. Sch. pombe mutants that lack the alternative pathway are still more UV-resistant than wild-type Sac. cerevisiae; recombination mutants are significantly UV sensitive (unlike their Sac. cerevisiae equivalents); mutants lacking the second pathway are sensitized to UV by caffeine; and checkpoint mutants are relatively more sensitive than the budding yeast equivalents. In addition, Sch. pombe has no photolyase. Thus, the response to UV in the two yeasts has a number of significant differences, which are not accounted for entirely by the existence of two alternative excision repair pathways. The long G2 in Sch. pombe, its well-developed recombination pathways and efficient cell cycle checkpoints are all significant components in survival of UV damage. 相似文献