首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J R Perfect  T H Rude  L M Penning  S A Johnson 《Gene》1992,122(1):213-217
We have cloned the phosphoribosyl anthranilate isomerase (PRAI)-encoding gene (TRP1) of Cryptococcus neoformans by genetic complementation in Saccharomyces cerevisiae. Sequence analysis of this gene revealed it to be 939 bp in length, and without known promoter or termination sequences. Unlike some of the filamentous fungi, where PRAI enzymatic activity is controlled by a trifunctional gene product, the C. neoformans PRAI appears to be unifunctional. PRAI of C. neoformans exhibits 39% amino acid (aa) sequence identity compared to the S. cerevisiae counterpart. The TRP1 gene of C. neoformans maps to different size chromosomes in strains with different serotypes. The cloning of this gene for vector constructions, and the demonstration that S. cerevisiae can be used as a surrogate for C. neoformans gene expression, should help with the molecular studies of this significant fungal pathogen in our increasing immunocompromised population.  相似文献   

3.
4.
5.
HeLa cells transiently transfected with a mammalian expression DNA vector expressing the Saccharomyces cerevisiae endo-exonuclease (EE) NUD1 gene have exhibited changes in cell survival frequencies after treatment with different DNA-damaging agents as compared to HeLa cells transfected with a control plasmid. The NUD1-transfected cells showed a dose-dependent increase in sensitivity to UV irradiation resulting in up to 58% decrease in cell survival. In response to gamma-irradiation NUD1 transfected cells featured an increased survival at doses equal to and greater than 2.0 Gy, reaching a maximum enhancement in survival frequency of 17%. At the same time, the NUD1-transfectants featured an increase in resistance to 0.25 microM-0.5 microM cis-platin (up to 58% increase in cell survival) and 1.0 mM EMS (11% increase). At higher concentrations of EMS NUD1 expression resulted in a decreased cell survival of the transfected cells (17% decrease for 2.5 mM EMS). No difference in cell survival frequencies between the NUD1-transfectants and the controls was observed after treatment with different concentrations of chlorambucil and mechlorethamine. These results suggest possible roles played by EEs in different DNA repair pathways--being stimulatory for the repair of certain types of DNA lesions, such as double strand breaks (DSBs), and interfering with the endogenous DNA repair systems for the repair of other types of lesions. Furthermore, these results also provide additional indirect evidence for the role of EEs in homologous recombination.  相似文献   

6.
7.
The cellular role of the DNA polymerase encoded by the Saccharomyces cerevisiae POL4 gene is unclear. We have used an epistasis analysis to investigate whether the proteins encoded by the POL4 and RAD27 genes participate in alternative, non-redundant subpathways of DNA base excision repair (BER). We constructed strains in which the genes were deleted singly or in combination and have examined their sensitivity to DNA damaging agents as well as spontaneous mutation frequency. The double deletion strain is no more sensitive to damaging agents and has no higher spontaneous mutation frequency than the most sensitive single mutant. These data indicate that the protein encoded by the POL4 gene does not participate in a non-redundant subpathway of base excision repair under these conditions. We discuss the implications of these results in light of the recent classification of the POL4 gene product as a member of the DNA polymerase lambda family.  相似文献   

8.
Three UV-sensitive (UVs) mutants isolated from a CHO cell line were analyzed for survival after exposure to H2O2, EMS, MMC, CCNU, X-rays and for mutation induction after UV-irradiation. The UVs mutants showed normal sensitivities to EMS and H2O2, whereas they were hypersensitive to the bifunctional alkylating agents MMC and CCNU and to hypoxic X-irradiation. Compared to parental cells, one of the UV-sensitive clones showed approximately 3- and 7-fold enhancement in the mutagenic response per unit UV dose for 6-thioguanine and ouabain resistance, respectively.  相似文献   

9.
The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp+ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy+ transformants directly, it was found that all pTL1 transformants were phenotypically Thy+ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of [6-3H]dUMP to [6-3H]dTMP. In protein extracts from the thymidylate auxotroph (tmp1-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain.  相似文献   

10.
A Galichet  A Belarbi 《FEBS letters》1999,458(2):188-192
alpha-Glucosidase is found in methanogenic and thermophilic archaea and also in eukaryotes and bacteria. The gene encoding the enzyme was cloned from Thermococcus hydrothermalis by complementation of a Saccharomyces cerevisiae deficiency maltase mutant strain. The gDNA clone isolated encodes an open reading frame corresponding to a protein of 242 amino acids. The protein shows 42% identity to a Pyrococcus horikoshii unknown ORF but no similarities were obtained with polysaccharidase sequences.  相似文献   

11.
We have screened a yeast genomic library for complementation of the UV sensitivity of mutants defective in the RAD1 gene and isolated a plasmid designated pNF1000 with an 8.9-kilobase insert. This multicopy plasmid quantitatively complemented the UV sensitivity of two rad1 mutants tested but did not affect the UV resistance of other rad mutants. The location of the UV resistance function in pNF1000 was determined by deletion analysis, and an internal fragment of the putative RAD1 gene was integrated into the genome of a RAD1 strain. Genetic analysis of several integrants showed that integration occurred at the chromosomal RAD1 site, demonstrating that the internal fragment was derived from the RAD1 gene. A 3.88-kilobase region of pNF1000 was sequenced and showed the presence of a small open reading frame 243 nucleotides long that is apparently unrelated to RAD1, as well as a 2,916-nucleotide larger open reading frame presumed to encode RAD1 protein. Depending on which of two possible ATG codons initiates translation, the size of the RAD1 protein is calculated at 110 or 97 kilodaltons.  相似文献   

12.
The RAD1 gene of Saccharomyces cerevisiae is involved in excision repair of damaged DNA. The nucleotide sequence of the RAD1 gene presented here shows an open reading frame of 3,300 nucleotides. Two ATG codons occur in the open reading frame at positions +1 and +334, respectively. Since a deletion of about 2.7 kilobases of DNA from the 5' region of the RAD1 gene, which also deletes the +1 ATG and 11 additional codons in the RAD1 open reading frame, partially complements UV sensitivity of a rad1 delta mutant, we examined the role of the +1 ATG and +334 ATG codons in translation initiation of RAD1 protein. Mutation of the +1 ATG codon to ATC affected the complementation ability of the RAD1 gene, whereas mutation of the +334 ATG codon to ATC showed no discernible effect on RAD1 function. These results indicate that translation of RAD1 protein is initiated from the +1 ATG codon. Productive in-frame RAD1-lacZ fusions showed that the RAD1 open reading frame is expressed in yeasts. The RAD1-encoded protein contains 1,100 amino acids with a molecular weight of 126,360.  相似文献   

13.
Summary The RAD18 gene of Saccharomyces cerevisiae is involved in mutagenic DNA repair. We describe its isolation from a yeast library introduced into the centromeric YCp50 vector, a low copy number plasmid. The insert was sublconed into YCp50 and into the multicopy YRp7 plasmid. RAD18 is not toxic when present in multiple copies but the UV survival response indicates an heterogeneity in the cell population, a fraction of it being more sensitive. A DNA segment, close to RAD18, is toxic on the multicopy plasmid and may correspond to the tRAN sup61 known to be tightly linked to RAD18. Chromosomal deletions of RAD18 were constructed. The gene is not essential and the deleted strains have the properties of single site mutants. Thus, RAD18 appears to be essentially involved in DNA repair metabolism.  相似文献   

14.
15.
Oligonucleotides can be used to direct the alteration of single nucleotides in chromosomal genes in yeast. Rad51 protein appears to play a central role in catalyzing the reaction, most likely through its DNA pairing function. Here, we re-engineer the RAD51 gene in order to produce proteins bearing altered levels of known activities. Overexpression of wild-type ScRAD51 elevates the correction of an integrated, mutant hygromycin resistance gene ~3-fold. Overexpression of an altered RAD51 gene, which encodes a protein that has a higher affinity for ScRad54, enhances the targeting frequency nearly 100-fold. Another mutation which increases the affinity of Rad51 for DNA was also found to increase gene repair when overexpressed in the cell. Other mutations in the Rad51 protein, such as one that reduces interaction with Rad52, has little or no effect on the frequency of gene repair. These data provide the first evidence that the Rad51 protein can be modified so as to increase the frequency of gene repair in yeast.  相似文献   

16.
17.
D R Higgins  S Prakash  P Reynolds  L Prakash 《Gene》1983,26(2-3):119-126
  相似文献   

18.
A "hypermutable" genome is a common characteristic of cancer cells, and it may contribute to the progressive accumulation of mutations required for the development of cancer. It has been reported that mammalian cells surviving exposure to gamma radiation display several highly persistent genomic instability phenotypes which may reflect a hypermutability similar to that seen in cancer. These phenotypes include an increased mutation frequency and a decreased plating efficiency, and they continue to be observed many generations after the radiation exposure. The underlying causes of this genomic instability have not been fully determined. We show here that exposure to gamma radiation and other DNA-damaging treatments induces a similar genomic instability in the yeast Saccharomyces cerevisiae. A dose-dependent increase in intrachromosomal recombination was observed in cultures derived from cells surviving gamma irradiation as many as 50 generations after the exposure. Increased forward mutation frequencies and low colony-forming efficiencies were also observed. Persistently elevated recombination frequencies in haploid cells were dominant after these cells were mated to nonirradiated partners, and the elevated recombination phenotype was also observed after treatment with the DNA-damaging agents ultraviolet light, hydrogen peroxide, and ethyl methanesulfonate. Radiation-induced genomic instability in yeast may represent a convenient model for the hypermutability observed in cancer cells.  相似文献   

19.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   

20.
Primary structure of the RAD52 gene in Saccharomyces cerevisiae.   总被引:17,自引:9,他引:17       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号