首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excitatory synaptic transmission in the brain is mediated by ligand-gated ion channels (iGluRs) activated by glutamate. Distinct from other neurotransmitter receptors, the extracellular domains of iGluRs are loosely packed assemblies with two clearly distinct layers, each of which has both local and global 2-fold axes of symmetry. By contrast, the iGluR transmembrane segments have 4-fold symmetry and share a conserved pore loop architecture found in tetrameric voltage-gated ion channels. The striking layered architecture of iGluRs revealed by the 3.6?? resolution structure of an AMPA receptor homotetramer likely arose from gene fusion events that occurred early in evolution. Although this modular design has greatly facilitated biophysical and structural studies on individual iGluR domains, and suggested conserved mechanisms for iGluR gating, recent work is beginning to reveal unanticipated diversity in the structure, allosteric regulation, and assembly of iGluR subtypes.  相似文献   

2.
We performed a genealogical analysis of the ionotropic glutamate receptor (iGluR) gene family, which includes the animal iGluRs and the newly isolated glutamate receptor-like genes (GLR) of plants discovered in Arabidopsis. Distance measures firmly placed the plant GLR genes within the iGluR clade as opposed to other ion channel clades and indicated that iGluRs may be a primitive signaling mechanism that predated the divergence of animals and plants. Moreover, phylogenetic analyses using both parsimony and neighbor joining indicated that the divergence of animal iGluRs and plant GLR genes predated the divergence of iGluR subtypes (NMDA vs. AMPA/KA) in animals. By estimating the congruence of the various glutamate receptor gene regions, we showed that the different functional domains, including the two ligand-binding domains and the transmembrane regions, have coevolved, suggesting that they assembled together before plants and animals diverged. Based on residue conservation and divergence as well as positions of residues with respect to functional domains of iGluR proteins, we attempted to examine structure-function relationships. This analysis defined M3 as the most highly conserved transmembrane domain and identified potential functionally important conserved residues whose function can be examined in future studies.  相似文献   

3.
Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response to cryptogein, a well studied elicitor of defence response, and partly responsible for cryptogein-induced NO production. However, other cryptogein-induced calcium-dependent events including anion efflux, H2O2 production, MAPK activation and hypersensitive response (HR) did not depend on iGluRs indicating that different calcium channels regulate different processes at the cell level. We have also demonstrated that cryptogein induces efflux of glutamate in the apoplast by exocytosis. Taken together, our results demonstrate for the first time, an involvement of a putative iGluR in plant defence signaling and NO production, by mechanisms that show homology with glutamate mode of action in mammals.  相似文献   

4.
In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)/kainate-type receptors, expressed in cortical astrocytes mediate glutamate-induced astrocyte HO activation that leads to cerebral vasodilation. Acute vasoactive effects of topical iGluR agonists were determined by intravital microscopy using closed cranial windows in anesthetized newborn pigs. iGluR agonists, including NMDA, (±)1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD), AMPA, and kainate, produced pial arteriolar dilation. Topical L-2-aminoadipic acid, a gliotoxin that selectively disrupts glia limitans, reduced vasodilation caused by iGluR agonists, but not by hypercapnia, bradykinin, or sodium nitroprusside. In freshly isolated and cultured cortical astrocytes constitutively expressing HO-2, iGluR agonists NMDA, cis-ACPD, AMPA, and kainate rapidly increased CO production two- to threefold. Astrocytes overexpressing inducible HO-1 had high baseline CO but were less sensitive to glutamate stimulation of CO production when compared with HO-2-expressing astrocytes. Glutamate-induced astrocyte HO-2-mediated CO production was inhibited by either the NMDA receptor antagonist (R)-3C4HPG or the AMPA/kainate receptor antagonist DNQX. Accordingly, either antagonist abolished pial arteriolar dilation in response to glutamate, NMDA, and AMPA, indicating functional interaction among various subtypes of astrocytic iGluRs in response to glutamate stimulation. Overall, these data indicate that the astrocyte component of the neurovascular unit is responsible for the vasodilation response of pial arterioles to topically applied glutamate via iGluRs that are functionally linked to activation of constitutive HO in newborn piglets.  相似文献   

5.
6.
Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment.  相似文献   

7.
Ionotropic glutamate receptors (iGluRs) mediate fast excitatory neurotransmission. Upon glutamate application, 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid receptors undergo rapid and almost complete desensitization that can be attenuated by positive allosteric modulators. The molecular mechanism of positive allosteric modulation has been elucidated previously by crystal structures of the ligand-binding core of iGluR2 in complex with, for example, cyclothiazide (CTZ). Here, we investigate the structure and function of CTZ and three closely related analogues NS1493, NS5206, and NS5217 at iGluR2, by X-ray crystallography and fast application patch-clamp electrophysiology. CTZ was the most efficacious and potent modulator of the four compounds on iGluR2(Q)i [Emax normalized to response of glutamate: 754% (CTZ), 490% (NS1493), 399% (NS5206), and 476% (NS5217) and EC50 in micromolar: 10 (CTZ), 26 (NS1493), 43 (NS5206), and 48 (NS5217)]. The four modulators divide into three groups according to efficacy and desensitization kinetics: (1) CTZ increases the peak current efficacy twice as much as the three analogues and nearly completely blocks receptor desensitization; (2) NS5206 and NS5217 have low efficacy and only attenuate desensitization partially; (3) NS1493 has low efficacy but nearly completely blocks receptor desensitization. A hydrophobic substituent at the 3-position of the 1,1-dioxo-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine ring system is important for compound efficacy, with the following ranking: norbornenyl (bicyclo[2.2.1]hept-2-ene) > cyclopentyl > methyl. The replacement of the norbornenyl moiety with a significantly less hydrophobic cyclopentane ring increases the flexibility of the modulator as the cyclopentane ring adopts various conformations at the iGluR2 allosteric binding site. The main structural feature responsible for a nearly complete block of desensitization is the presence of an NH hydrogen bond donor in the 4-position of the 1,1-dioxo-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine ring system, forming an anchoring hydrogen bond to Ser754. Therefore, the atom at the 4-position of CTZ seems to be a major determinant of receptor desensitization kinetics.  相似文献   

8.
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.  相似文献   

9.
Chronic cocaine use in humans and animal models is known to lead to pronounced alterations in glutamatergic function in brain regions associated with reinforcement. Previous studies have examined ionotropic glutamate receptor (iGluR) subunit protein level changes following acute and chronic experimenter-administered cocaine or after withdrawal periods from experimenter-administered cocaine. To evaluate whether alterations in expression of iGluRs are associated with cocaine reinforcement, protein levels were assessed after binge (8 h/day, 15 days; 24-h access, days 16-21) cocaine self-administration and following 2 weeks of abstinence from this binge. Western blotting was used to compare levels of iGluR protein expression (NR1-3B, GluR1-7, KA2) in the ventral tegmental area (VTA), substantia nigra (SN), nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) of rats. iGluR subunits were altered in a time-dependent manner in all brain regions studied; however, selective alterations in certain iGluR subtypes appeared to be associated with binge cocaine self-administration and withdrawal in a region-specific manner. In the SN and VTA, alterations in iGluR protein levels compared with controls occurred only following binge access, whereas in the striatum and PFC, iGluR alterations occurred with binge access and following withdrawal. In the NAc, GluR2/3 levels were increased following withdrawal compared with binge access, and were the only changes observed in this region. Because subunit composition determines the functional properties of iGluRs, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.  相似文献   

10.
Previous studies showed that a variety of bone cells express protein components necessary for neuronal-like glutamatergic signaling and implicated glutamate as having a role in mechanically induced bone remodeling. Initial functional studies concentrated on the role of glutamate signaling in bone resorption and provided compelling evidence to suggest that glutamate signaling through functional NMDA type ionotropic glutamate receptors (iGluRs) is a prerequisite for in vitro osteoclastogenesis. Originally, effects of iGluR antagonists seen in co-cultures were attributed to antagonists acting directly on osteoclast precursors. However, in the light of recent osteoblast studies it now seems likely that the observed effects on osteoclastogenesis are an indirect effect of modulating the function of pre-osteoblast present within these cultures. The presence of iGluRs in osteoblasts suggests a role for them in bone formation and this paper reviews and discusses the emerging data relating to the role of glutamate signaling in osteoblasts. A number of recently published studies have shown that osteoblasts not only express a wide number of 'pre-synaptic' glutamatergic proteins but also possess the ability to both regulate glutamate release and actively recycle extracellular glutamate. The functionality of osteoblastic 'post-synaptic' glutamatergic components has also been shown as both primary and clonal osteoblasts express electrophysiologically active iGluRs, metabotropic type glutamate receptors (mGluRs) along with a variety of glutamate receptor associated signaling proteins. There is, however, little published data regarding the actual role of glutamatergic signaling in osteoblastic bone formation. In vivo and in vitro studies performed provide evidence that glutamatergic signaling is a necessity for normal osteoblast function. In a number of different models of in vitro bone formation, the addition of non-competitive antagonists of iGluRs prevents the formation of mineralized bone, moreover antagonizing some sub-types of iGluR mediates the differentiation of pre-osteoblasts. iGluR antagonists modulate osteoblast function in a manner that correlates with the previously reported data regarding in vitro osteoclastogenesis. Interestingly iGluR mediated glutamate signaling appears to function differently in osteoblasts derived from flat and long bones. This implies the components of osteoblastic glutamatergic signaling may be adapted in vivo possibly to reflect the differential function of osteoblasts in those regions of the skeleton.  相似文献   

11.
Ionotropic glutamate receptors (iGluRs) play important roles in neurotransmission in animals. There is growing evidence that iGluRs also play important roles in plants. Using a chemical genetics approach, which combined a pH-homeostasis mutant of Arabidopsis thaliana (de-etiolated3), several different iGluR agonists, molecular modelling, and reporter gene expression in transgenic plants, we provide evidence that iGluR agonism can induce dramatic changes in plant development and metabolism. Systematic hypothesis testing revealed a signalling circuit that integrates amino acid and sugar signals to affect elongation growth and the deposition of carbon into starch and lignins. The data show that aminoglycoside antibiotics, such as kanamycin, and polyamines impinge upon this circuit. These findings provide a mechanism for the conversion of amino acid and sugar signals into an appropriate response at the gene expression level, and underline the similarities in iGluR agonism between animals and plants.  相似文献   

12.
The ionotropic glutamate receptor (iGluR) gene family has been widely studied in animals and is determined to be important in excitatory neurotransmission and other neuronal processes. We have previously identified ionotropic glutamate receptor-like genes (GLRs) in Arabidopsis thaliana, an organism that lacks a nervous system. Upon the completion of the Arabidopsis genome sequencing project, a large family of GLR genes has been uncovered. A preliminary phylogenetic analysis divides the AtGLR gene family into three clades and is used as the basis for the recently established nomenclature for the AtGLR gene family. We performed a phylogenetic analysis with extensive annotations of the iGluR gene family, which includes all 20 Arabidopsis GLR genes, the entire iGluR family from rat (except NR3), and two prokaryotic iGluRs, Synechocystis GluR0 and Anabaena GluR. Our analysis supports the division of the AtGLR gene family into three clades and identifies potential functionally important amino acid residues that are conserved in both prokaryotic and eukaryotic iGluRs as well as those that are only conserved in AtGLRs. To begin to investigate whether the three AtGLR clades represent different functional classes, we performed the first comprehensive mRNA expression analysis of the entire AtGLR gene family. On the basis of RT-PCR, all AtGLRs are expressed genes. The three AtGLR clades do not show distinct clade-specific organ expression patterns. All 20 AtGLR genes are expressed in the root. Among them, five of the nine clade-II genes are root-specific in 8-week-old Arabidopsis plants.  相似文献   

13.
Ionotropic glutamate receptors (iGluRs) are modular proteins that contain ion channel permeable to different cations including calcium. The physiological role of iGluRs is mainly defined by the fact that currents conducted by their channels underlie communication between neurons in the majority of synapses in our brain. Knowing the structure and function of iGluR channel will not only give us a clue to how our brain works but also may help us to develop drugs for the treatment of multiple neurological disorders. Here I give a brief historical overview of the progress made in studies of iGluR channel structure and function that started more than two decades ago with studies of ion channel block. The article is published in the original.  相似文献   

14.
The effect of lesions induced by bilateral intracerebroventricular (i.c.v.) injection of quinolinate (250 nmol of QUIN/ventricle), a selective N-methyl-D-aspartate (NMDA) receptor agonist, on [3H]glutamate ([3H]Glu) binding to the main types of both ionotropic and metabotropic glutamate receptors (iGluR and mGluR) was investigated in synaptic membrane preparations from the hippocampi of 50-day-old rats. The membranes from QUIN injured brains revealed significantly lowered binding in iGluR (by 31%) as well as in mGluR (by 22%) as compared to the controls. Using selected glutamate receptor agonists as displacers of [3H]Glu binding we found that both the NMDA-subtype of iGluR and group I of mGluR are involved in this decrease of binding. Suppression of nitric oxide (NO) production by N(G)-nitro-L-arginine (50 nmol of NARG/ventricle) or the increase of NO generation by 3-morpholinylsydnoneimine (5 nmol of SIN-1/ventricle) failed to alter [3H]Glu or [3H]CPP (3-((D)-2-carboxypiperazin-4-yl)-[1,2-(3)H]-propyl-1-phosphonic acid; NMDA-antagonist) binding declines caused by QUIN-lesions. Thus, our findings indicate that both the NMDA-subtype of iGluR and group I of mGluR are susceptible to the QUIN-induced neurodegeneration in the rat hippocampus. However, the inhibition of NO synthesis did not reveal any protective action in the QUIN-evoked, NMDA-receptor mediated decrease of [3H]Glu binding. Therefore, the additional mechanisms of QUIN action, different from direct NMDA receptor activation/NO production (e.g. lipid peroxidation induced by QUIN-Fe-complexes) cannot be excluded.  相似文献   

15.
In the present study, the newly synthesized TRH analog (l-pGlu-(2-propyl)-l-His-l-ProNH2; NP-647) was evaluated for its effects in in vitro (oxygen glucose deprivation (OGD)-, glutamate- and H2O2-induced injury in PC-12 cells) and in vivo (transient global ischemia) models of cerebral ischemic injury. PC-12 cells were subjected to oxygen and glucose deprivation for 6 h. Exposure of NP-647 was given before and during OGD. In glutamate and H2O2 induced injury, exposure of NP-647 was given 1, 6 and 24 h prior to exposure of glutamate and H2O2 exposure. NP-647, per se found to be non-toxic in 1-100 μM concentrations. NP-647 showed protection against OGD at the 1 and 10 μM. The concentration-dependent protection was observed in H2O2- and glutamate-induced cellular injury. In in vivo studies, NP-647 treatment showed protection of hippocampal (CA1) neuronal damage in transient global ischemia in mice and subsequent improvement in memory retention was observed using passive avoidance retention test. Moreover, administration of NP-647 resulted in decrease in inflammatory cytokines TNF-α and IL-6 as well as lipid peroxidation. These results suggest potential of NP-647 in the treatment of cerebral ischemia and its neuroprotective effect may be attributed to reduction of excitotoxicity, oxidative stress and inflammation.  相似文献   

16.
Jackson AC  Nicoll RA 《Neuron》2011,70(2):178-199
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.  相似文献   

17.
The excitotoxicity induced by excessive activation of the glutamatergic neurotransmission pathway is involved in several neuropathologies. In this sense, molecules that prevent the release of glutamate or the excessive activation of its receptors can be useful in preventing the neuronal cell death observed in these diseases. Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates, and some have been used in the study and purification of glutamate receptors. ConBr is a mannose/glucose-binding lectin purified from Canavalia brasiliensis seeds. In the present study, we aimed to evaluate the neuroprotective activity of ConBr against glutamate-induced excitotoxicity. Hippocampal slices were isolated from adult male mice and incubated for 6 h in Krebs saline/DMEM buffer alone (control), in the presence of glutamate or glutamate plus ConBr. The phosphorylation of Akt and mitogen activated protein kinases (MAPKs) such as ERK1/2, p38MAPK and JNK1/2/3 was evaluated with western blotting. The results indicate that glutamate provoked a reduction in the hippocampal slice viability (−25%), diminished the phosphorylation of Akt and augmented p38MAPK and ERK1 phosphorylation. No changes were observed in the phosphorylation of JNK1/2/3 or ERK2. Notably, ConBr, through a mechanism dependent on carbohydrate interaction, prevented the reduction of cell viability and Akt phosphorylation induced by glutamate. Furthermore, in the presence of the PI3K inhibitor LY294002, ConBr was unable to reverse glutamate neurotoxicity. Taken together, our data suggest that the neuroprotective effect of ConBr against glutamate neurotoxicity requires oligosaccharide interaction and is dependent on the PI3K/Akt pathway.  相似文献   

18.
Ionotropic glutamate receptors (iGluRs) are an important class of heteromeric ligand-gated receptor complexes that mediate a large portion of the excitatory neurotransmission in the vertebrate CNS. Since the cloning of the first iGluR subunit in 1989, the study of this receptor family has rapidly developed in mammals and expanded to include the study of conserved glutamate receptors in simpler invertebrate systems, including the fruit fly Drosophila melanogaster and the soil nematode Caenorhabditis elegans. These model organisms have enabled the genetic analysis of glutamate receptors in the context of a simpler nervous system and provided new insights into receptor function and regulation. In this review we will focus on recent studies that have used genetic, behavioral, and electrophysiological techniques to study the function of iGluRs in C. elegans.  相似文献   

19.
GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor (iGluR). We have solved the crystal structure of the ligand-binding core of NpGluR0 in complex with l-glutamate at a resolution of 2.1 Å. The structure exhibits a noncanonical ligand interaction and two distinct subunit interfaces. The side-chain guanidium group of Arg80 forms a salt bridge with the γ-carboxyl group of bound l-glutamate: in GluR0 from Synechocystis (SGluR0) and other iGluRs, the equivalent residues are Asn or Thr, which cannot form a similar interaction. We suggest that the local positively charged environment and the steric constraint created by Arg80 mediate the selectivity of l-glutamate binding by preventing the binding of positively charged and hydrophobic amino acids. In addition, the NpGluR0 ligand-binding core forms a new subunit interface in which the two protomers are arranged differently than the known iGluR and SGluR0 dimer interfaces. The significance of there being two different dimer interfaces was investigated using analytical ultracentrifugation analysis.  相似文献   

20.
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are the predominant neuroreceptors in the mammalian brain. Genes with high sequence similarity to animal iGluRs have been identified in Arabidopsis. To understand the role of Arabidopsis glutamate receptor-like (AtGLR) genes in plants, we have taken a pharmacological approach by examining the effects of BMAA [S(+)-beta-methyl-alpha, beta-diaminopropionic acid], a cycad-derived iGluR agonist, on Arabidopsis morphogenesis. When applied to Arabidopsis seedlings, BMAA caused a 2- to 3-fold increase in hypocotyl elongation and inhibited cotyledon opening during early seedling development. The effect of BMAA on hypocotyl elongation is light specific. Furthermore, BMAA effects on early morphogenesis of Arabidopsis can be reversed by the simultaneous application of glutamate, the native iGluR agonist in animals. To determine the targets of BMAA action in Arabidopsis, a genetic screen was devised to isolate Arabidopsis mutants with a BMAA insensitive morphology (bim). When grown in the light on BMAA, bim mutants exhibited short hypocotyls compared with wild type. bim mutants were grouped into three classes based on their morphology when grown in the dark in the absence of BMAA. Class-I bim mutants have a normal, etiolated morphology, similar to wild-type plants. Class-II bim mutants have shorter hypocotyls and closed cotyledons when grown in the dark. Class-III bim mutants have short hypocotyls and open cotyledons when grown in the dark, resembling the previously characterized constitutively photomorphogenic mutants (cop, det, fus, and shy). Further analysis of the bim mutants should help define whether plant-derived iGluR agonists target glutamate receptor signaling pathways in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号