共查询到20条相似文献,搜索用时 0 毫秒
1.
Siqueira IR Cimarosti H Fochesatto C Nunes DS Salbego C Elisabetsky E Netto CA 《Life sciences》2004,75(15):1897-1906
Alcoholic infusions of Ptychopetalum olacoides Bentham (PO, Olacaceae) are used in traditional medicine by patients presenting age associated symptoms and those recovering from stroke. The aim of this study is to evaluate the neuroprotective properties of PO ethanol extract (POEE) using hippocampal slices from Wistar rats exposed to oxygen and glucose deprivation (OGD, followed by reoxygenation). Mitochondrial activity, an index of cell viability, was assessed by the MTT assay; in addition, the free radicals content was estimated by the use of dichlorofluorescein diacetate as probe. The OGD ischemic condition significantly impaired cellular viability, and increased free radicals generation. In non-OGD slices, incubation with POEE (0.6 microg/ml) increased (approximately 40%) mitochondrial activity, without affecting free radicals levels. In comparison to OGD controls, slices incubated with POEE (0.6 microg/ml) during and after OGD exposure had significantly increased cellular viability. In addition, at this same concentration, POEE prevented the increase of free radicals content induced by OGD. In view of the fact that respiratory chain inhibition and increased generation of free radicals are major consequences of the ischemic injury, this study suggests that Ptychopetalum olacoides contains useful neuroprotective compounds and, therefore, deserves further scrutiny. 相似文献
2.
Daniel T. Thomaz Tharine A. Dal-Cim Wagner C. Martins Maurício Peña Cunha Débora Lanznaster Andreza F. de Bem Carla I. Tasca 《Purinergic signalling》2016,12(4):707-718
Guanosine, the endogenous guanine nucleoside, prevents cellular death induced by ischemic events and is a promising neuroprotective agent. During an ischemic event, nitric oxide has been reported to either cause or prevent cell death. Our aim was to evaluate the neuroprotective effects of guanosine against oxidative damage in hippocampal slices subjected to an in vitro ischemia model, the oxygen/glucose deprivation (OGD) protocol. We also assessed the participation of nitric oxide synthase (NOS) enzymes activity on the neuroprotection promoted by guanosine. Here, we showed that guanosine prevented the increase in ROS, nitric oxide, and peroxynitrite production induced by OGD. Moreover, guanosine prevented the loss of mitochondrial membrane potential in hippocampal slices subjected to OGD. Guanosine did not present an antioxidant effect per se. The protective effects of guanosine were mimicked by inhibition of neuronal NOS, but not of inducible NOS. The neuroprotective effect of guanosine may involve activation of cellular mechanisms that prevent the increase in nitric oxide production, possibly via neuronal NOS. 相似文献
3.
Tharine Dal‐Cim Fabiana K. Ludka Wagner C. Martins Charlise Reginato Esther Parada Javier Egea Manuela G. López Carla I. Tasca 《Journal of neurochemistry》2013,126(4):437-450
Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti‐inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol‐3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin‐sensitive G‐protein‐coupled signaling, blockade of adenosine A2A receptors (A2AR), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake. 相似文献
4.
dos Santos AQ Nardin P Funchal C de Almeida LM Jacques-Silva MC Wofchuk ST Gonçalves CA Gottfried C 《Archives of biochemistry and biophysics》2006,453(2):161-167
Resveratrol, a phytoalexin found mainly in grapes, is a promising natural product with anti-cancer and cardio-protective activities. Here, we investigated, in C6 glioma cells, the effect of resveratrol on some specific parameters of astrocyte activity (glutamate uptake, glutamine synthetase and secretion of S100B, a neurotrophic cytokine) commonly associated with the protective role of these cells. Cell proliferation was significantly decreased by 8% and 26%, following 24h of treatment with 100 and 250 microM resveratrol. Extracellular S100B increased after 48 h of resveratrol exposure. Short-term resveratrol exposure (from 1 to 100 microM) induced a linear increase in glutamate uptake (up to 50% at 100 microM resveratrol) and in glutamine synthetase activity. Changes in these glial activities can contribute to the protective role of astrocytes in brain injury conditions, reinforcing the putative use of this compound in the therapeutic arsenal against neurodegenerative diseases and ischemic disorders. 相似文献
5.
Glutamate neurotoxicity in brain is normally prevented by rapid uptake of glutamate by astrocytes. Increased expression of Cu,Zn superoxide dismutase (SOD1) can increase resistance to cerebral ischemia and other oxidative insults, but the cellular mechanisms by which this occurs are not well established. Here we examine whether increased SOD1 expression can attenuate inhibition of astrocyte glutamate uptake by reactive oxygen species. Primary cortical astrocyte cultures were prepared from transgenic mice that overexpress human SOD1 and from nontransgenic littermate controls. Glutamate uptake was assessed after exposure of these cultures to xanthine oxidase plus hypoxanthine, an extracellular superoxide generating system, or to menadione, which generates superoxide in the cytosol. These treatments produced dose-dependent reductions in astrocyte glutamate uptake, and the reductions were significantly attenuated in the SOD1 transgenic astrocytes. A specific effect of reactive oxygen species on glutamate transporters was suggested by the much smaller inhibitory effects of xanthine oxidase/hypoxanthine and menadione on GABA uptake than on glutamate uptake. These findings suggest that the cerebroprotective effects of increased SOD1 expression during cerebral ischemia-reperfusion could be mediated in part by astrocyte glutamate transport. 相似文献
6.
Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25?μM, 45?min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM. 相似文献
7.
Luciana E. Drumond Talita H. Ferreira‐Vieira Danielle Bernardes Josiane F. Silva Virgínia S. Lemos Márcio F. D. Moraes Grace S. Pereira Juliana Carvalho‐Tavares André R. Massensini 《Journal of neurochemistry》2012,123(2):317-324
Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty‐eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non‐deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro‐oxidative markers. In fact, TRA‐OGD slices showed lowered levels of lactate dehydrogenase when compared with SED‐OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release. 相似文献
8.
9.
神经节苷脂GM1对体外缺糖缺氧/再灌注大鼠海马脑片保护作用的研究 总被引:2,自引:0,他引:2
目的 :探讨神经节苷脂GM 1对体外缺糖 /缺氧再灌注 (OGD/Rep)大鼠海马脑片的保护作用。 方法 :采用测定脑片OGD/Rep后光通透度改变和 2 ,3 ,5 三苯基氯化四氮唑 (TTC)染色。结果 :①在 0 (对照 )、0 .1、1.0、10 μmol/LGM1四个处理组中 ,1μmol/LGM1组脑片光通透度峰值明显低于对照组和 0 .1μmol/LGM1组 (P <0 .0 1,ANO VA) ,10 μmol/LGM 1组脑片的峰值明显低于其他组 (P <0 .0 1)。脑片OGD后光通透度到达峰值的时间在四组间有显著性差异 (P <0 .0 5 ,Kruskal Wallistest) ,1μmol/LGM1组较对照组有显著差异 (P <0 .0 1,Mann WhitneyUtest)。②GM1与OGD/RP后大鼠海马脑片TTC染色呈现一定的剂量反应关系。在 0 (对照 )、0 .0 1、0 .1、1.0、10μmol/LGM1五组中 ,1μmol/LGM 1组脑片TTC染色最深 (P <0 .0 5vs对照、0 .0 1和 0 .1μmol/L组 ,ANOVA) ,10 μmol/LGM 1组次之 (P <0 .0 5vs对照和 0 .0 1μmol/L组 ,ANOVA)。 结论 :GM 1可以有效的保护体外大鼠海马脑片缺糖 /缺氧再灌注损伤。 相似文献
10.
Unveiling the roles of distinct cell types in brain response to insults is a partially unsolved challenge and a key issue for new neuroreparative approaches. In vivo models are not able to dissect the contribution of residential microglia and infiltrating blood-borne monocytes/macrophages, which are fundamentally undistinguishable; conversely, cultured cells lack original tissue anatomical and functional complexity, which profoundly alters reactivity. Here, we tested whether rodent organotypic co-cultures from mesencephalic ventral tegmental area/substantia nigra and prefrontal cortex (VTA/SN-PFC) represent a suitable model to study changes induced by oxygen/glucose deprivation and reperfusion (OGD/R). OGD/R induced cytotoxicity to both VTA/SN and PFC slices, with higher VTA/SN susceptibility. Neurons were highly affected, with astrocytes and oligodendrocytes undergoing very mild damage. Marked reactive astrogliosis was also evident. Notably, OGD/R triggered the activation of CD68-expressing microglia and increased expression of Ym1 and Arg1, two markers of “alternatively” activated beneficial microglia. Treatment with two well-known neuroprotective drugs, the anticonvulsant agent valproic acid and the purinergic P2-antagonist PPADS, prevented neuronal damage. Thus, VTA/SN-PFC cultures are an integrated model to investigate OGD/R-induced effects on distinct cells and easily screen neuroprotective agents. The model is particularly adequate to dissect the microglia phenotypic shift in the lack of a functional vascular compartment. 相似文献
11.
Overexpression of GRP78 enhances survival of CHO cells in response to serum deprivation and oxidative stress 下载免费PDF全文
Qing Jiang Yuanli Sun Zilong Guo Mingpeng Fu Qiang Wang Huifen Zhu Ping Lei Guanxin Shen 《Engineering in Life Science》2017,17(2):107-116
Chinese hamster ovary (CHO) cells are regarded as one of the most commonly used mammalian hosts, which decreases the productivity due to loss in culture viability. Overexpressing antiapoptosis genes in CHO cells was developed as a means of limiting cell death upon exposure to environmental insults. Glucose‐regulated protein 78 (GRP78) is traditionally regarded as a major ER chaperone that participates in protein folding and other cell processes. It is also a potent antiapoptotic protein and plays a critical role in cell survival, proliferation, and metastasis. In this study, the impact of GRP78 on CHO cells in response to environmental insults such as serum deprivation and oxidative stress was investigated. First, it was confirmed that CHO cells were very sensitive to environmental insults. Then, GRP78 overexpressing CHO cell line was established and exposed to serum deprivation and H2O2. Results showed that GRP78 engineering increased the viability and decreased the apoptosis of CHO cells. The survival advantage due to GRP78 engineering could be mediated by suppression of caspase‐3 involved in cell death pathways in stressed cells. Besides, GRP78 engineering also enhanced yields of antibody against transferrin receptor in CHO cells. GRP78 should be a potential application in the biopharmaceutical industries. 相似文献
12.
Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices 总被引:5,自引:0,他引:5
Cater HL Chandratheva A Benham CD Morrison B Sundstrom LE 《Journal of neurochemistry》2003,87(6):1381-1390
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone. 相似文献
13.
Sleep is essential for the physical and mental health of a human being. Problems of sleep deprivation are increasing in modern society nowadays. Recently, various antioxidants have been implicated as neuroprotectants in the treatment of stress and stress related problems. The present study was designed to explore the possible role of nitric oxide in the protective effect of Curcumin (Curcuma longa, Zingiberaceae) against 72-h sleep deprivation-induced behavioral alterations and oxidative damage in mice. 72-h sleep deprivation significantly caused weight loss, anxiety like behavior, impaired locomotor activity and oxidative damage (increased lipid peroxidation, nitrite level and deplete glutathione and catalase activity) in animals. Treatment with Curcumin extract (10 and 20 mg/kg, ip) for 5 days significantly prevented weight loss, impairment in locomotor activity, anxiety like effects in all behavioral paradigms tasks (mirror chamber, plus maze, zero maze) as compared to control (72-h sleep-deprived) (P<0.05). Biochemically, Curcumin extract treatment significantly restored depleted reduced glutathione, catalase activity, attenuated raised lipid peroxidation and nitrite level as compared to control (72-h sleep-deprived) animals. Further, pretreatment of l-arginine (50 mg/kg, ip), nitric oxide precursor reversed the protective effect of Curcumin (10 mg/kg, ip) (P<0.05). However, pretreatment of l-NAME (5 mg/kg, ip), nitric oxide synthase inhibitor caused a potentiation in the protective effect of Curcumin (P<0.05). The present study suggests that nitric oxide modulation is involved in the protective effect of Curcumin in ameliorating sleep deprivation-induced behavioral alterations and oxidative damage. 相似文献
14.
15.
Vats P Mukherjee AK Kumria MM Singh SN Patil SK Rangnathan S Sridharan K 《International journal of biometeorology》1999,42(4):205-209
Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein
metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase
under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were
exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood
haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase
and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed
animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28–30%)
in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin
and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following
1 day of hypoxic exposure (4.76±0.78 mg·g−1 wet tissue in normal unexposed rats; 15.82±2.30 mg·g−1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was
no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase
in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14,
and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure.
There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine
synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of
exposure. Glutamine synthetase activity in muscle was significantly higher in the 14-day exposed group (4.32 μmol γ-glutamyl
hydroxamate formed·g protein−1·min−1) in comparison to normal (1.53 μmol γ-glutamyl hydroxamate formed·g protein−1·min−1); this parameter had decreased by 40% following 21 days of exposure. These results suggest that since no dramatic changes
in the levels of protein were observed in the muscle and liver, there is an alteration in glutaminase and glutamine synthetase
activity in order to maintain nitrogen metabolism in the initial phase of hypoxic exposure.
Received: 30 March 1998 / Revised: 18 November 1998 / Accepted: 25 November 1998 相似文献
16.
Rawal A Muddeshwar M Biswas S 《Biochemical and biophysical research communications》2004,324(2):588-596
The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO2)]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O*2-), hydroxyl radicals (*OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO-) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of gamma-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage. 相似文献
17.
低温对大鼠海马脑片缺氧无糖损伤的保护作用及其与Glu受体的关系 总被引:2,自引:0,他引:2
目的:探讨低温对离体大鼠海马脑片缺氧无糖(oxygen and glucose deprivation,OGD)损伤的保护作用及其机制.方法:①观察大鼠海马脑片在OGD条件下顺向群峰电位(orthodromic population spike,OPS)的变化及温度对它的影响.②观察谷氨酸(Glu)对海马脑片OPS的影响及低温的抗Glu毒性作用.并在人工脑脊液(ACSF)中分别加入GABA-R的特异性阻滞剂bicuculline(BMI)和NMDA-R的特异性阻滞剂D-(-)-2-Amino-5-phospho-nopentanoic Acid(AP5)或加入BMI和非NMDA-R阻滞剂6,7-Dinitroquinoxaline-2,3(1H,4H)-dione(CNQX)来观察低温对海马脑片OGD损伤保护作用的突触后受体机制.③观察OGD1h后海马CA1区锥体细胞超微结构的变化及低温对其的影响.结果:①OGD可以使海马脑片OPS迅速降低并很快消失,14 min后复氧供糖OPS极少恢复.低温(32℃、25℃)能使OPS消失时间明显延长,复氧供糖后OPS恢复良好.25℃其作用优于32℃.②2 mmol/LGlu使海马脑片OPS迅速消失,洗出后难以恢复.低温(3 2℃、25℃)能显著改善去Glu 1h后OPS的恢复.ACSF中加入BMI CNQX和BMI AP5均对25℃低温处理28min的脑保护作用没有影响.③OGD1h后CA1区锥体细胞水肿严重,胞浆内细胞器变性坏死脱失,线粒体肿胀,脊呈空泡状.低温(25℃)组细胞核膜规则,线粒体轻度肿胀.结论:低温有显著的抗脑OGD损伤作用,其作用机制可能与抗Glu的兴奋性毒性作用和维持细胞内ATP水平有关.而其抗兴奋性毒性作用可能既有NMDA-R又有非NMDA-R的参与. 相似文献
18.
Glutamate clearance by astrocytes is critical for controlling excitatory neurotransmission and ATP is an important mediator for neuron-astrocyte interaction. However, the effect of ATP on glutamate clearance has never been examined. Here we report that treatment of RBA-2 cells, a type-2-like astrocyte cell line, with ATP and the P2X(7) receptor selective agonist 3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) decreased the Na+-dependent [3H]glutamate uptake within minutes. Mechanistic studies revealed that the decreases were augmented by removal of extracellular Mg2+ or Ca2+, and was restored by P2X7 selective antagonist , periodate-oxidized 2',3'-dialdehyde ATP (oATP), indicating that the decreases were mediated through P2X(7) receptors. Furthermore, stimulation of P2X7 receptors for 2 h inhibited both activity and protein expression of glutamine synthetase (GS), and oATP abolished the inhibition. In addition, removal of extracellular Ca(2+) and inhibition of protein kinase C (PKC) restored the ATP-decreased GS expression but failed to restore the P2X(7)-decreased [3H]glutamate uptake. Therefore, P2X7-mediated intracellular signals play a role in the down-regulation of GS activity/expression. Activation of P2X7 receptors stimulated increases in intracellular Na+ concentration ([Na+](i)) suggesting that the P2X(7)-induced increases in [Na+](i) may affect the local Na+ gradient and decrease the Na+-dependent [3H]glutamate uptake. These findings demonstrate that the P2X7-mediated decreases in glutamate uptake and glutamine synthesis were mediated through distinct mechanisms in these cells. 相似文献
19.
Jie Li Roashan Ayene Kathleen M. Ward Eswarkumar Dayanandam Iraimoudi S. Ayene 《Cell biochemistry and function》2009,27(2):93-101
Recent studies have indicated that nutrient deprivation particularly glucose may play a major role in tumor cell tolerance to a generally oxidative stress environment in solid tumors. Here, we studied the impact of glucose deprivation on the response of human colon (HT29) and prostate (DU145) cancer cells to γ radiation. A significant decrease in intracellular glucose level was observed in glucose deprived cells as measured by bioreductive assay. The survival of HT29 and DU145 were increased by 30 and 100% respectively when these cells were exposed to γ radiation in the absence of glucose compared to that in the presence of glucose. In glucose depleted medium, glutathione (GSH), a free radical scavenger, content remained the same, and showed no correlation with the radiation resistance induced by glucose deprivation. Glucose regulated protein78 (GRP78), a stress response survival protein, was not significantly increased in cells deprived of glucose for 4 h compared to those cells in glucose. DNA repair protein Ku, which is known to play a major role in cellular resistance to radiation, was significantly increased in glucose deprived cancer cells that showed enhanced radiation resistance. These results have demonstrated, for the first time, that glucose deprivation mediated stress increased the expression of nuclear Ku and resistance to radiation induced oxidative stress in human cancer cells. The additional resistance caused by glucose deprivation in cancer cells has clinical significance since solid tumors are known to have low level of glucose due to diffusion limited blood supply and higher metabolic activity. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Florian Thilo Marlene Lee Shengqiang Xia Andreas Zakrzewicz Martin Tepel 《Biochemical and biophysical research communications》2014
Transient receptor potential canonical (TRPC) channels type 6 play an important role in the function of human podocytes. Diabetic nephropathy is characterized by altered TRPC6 expression and functions of podocytes. Thus, we hypothesized that high glucose modifies TRPC6 channels via increased oxidative stress and syndecan-4 (SDC-4) in human podocytes. 相似文献