首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death.  相似文献   

2.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   

3.
4.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

5.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

6.
7.
Abstract: Excess activation of NMDA receptors is felt to participate in secondary neuronal damage after traumatic brain injury (TBI). Increased extracellular glutamate is active in this process and may result from either increased release or decreased reuptake. The two high-affinity sodium-dependent glial transporters [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)] mediate the bulk of glutamate transport. We studied the protein levels of GLT-1 and GLAST in the brains of rats after controlled cortical impact-induced TBI. With use of subtype-specific antibodies, GLT-1 and GLAST proteins were quantitated by immunoblotting in the ipsilateral and contralateral cortex at 2, 6, 24, 72, and 168 h after the injury. Sham-operated rats served as control. TBI resulted in a significant decrease in GLT-1 (by 20–45%; p < 0.05) and GLAST (by 30–50%; p < 0.05) protein levels between 6 and 72 h after the injury. d -[3H]Aspartate binding also decreased significantly (by 30–50%; p < 0.05) between 6 and 72 h after the injury. Decreased glial glutamate transporter function may contribute to the increased extracellular glutamate that may mediate the excitotoxic neuronal damage after TBI. This is a first report showing altered levels of glutamate transporter proteins after TBI.  相似文献   

8.
Glial glutamate transporter GLT-1 mRNA was selectively induced in C6 glioma cells exposed to hypertonic stress (HS), while the expression of two other subtypes, GLAST and EAAC1, was suppressed. HS increased phosphorylation of the MAPK family, ERK, p38 MAPK, and JNK. Treatment with a PKC inhibitor showed that phosphorylation of both p38 MAPK and JNK is PKC-dependent but ERK phosphorylation is independent. Inhibition of either ERK or p38 MAPK did not abolish GLT-1 mRNA induction. Inhibition of PKC also had no effect. These findings indicate that the induction of GLT-1 mRNA by HS is independent of the MAPK pathways. This is the first report that the expression of glial glutamate transporters is osmotically regulated.  相似文献   

9.
Excitatory amino acid transporters (EAATs) are membrane-bound proteins localized in glial and neuronal cells which transport glutamate (Glu) in a process essential for terminating its action and protecting neurons from excitotoxic damage. Since Pb-induced neurotoxicity has a glutamatergic component and astrocytes serve as a cellular Pb deposition site, it was of interest to investigate the response of main glutamate transporters to short-term lead exposure in the adult rat brain (25mg/kg b.w. of lead acetate, i.p. for 3 days). We examined the expression of mRNA and protein of GLAST, GLT-1 and EAAC1 in homogenates obtained from cerebellum, hippocampus and forebrain. Molecular evidence is provided which indicates that, of the two glial transporters, GLT-1 is more susceptible than GLAST to the neurotoxic effect arising from Pb. RT-PCR analysis revealed highly decreased expression of GLT-1 mRNA in forebrain and hippocampus. In contrast, GLAST was overexpressed in forebrain and in cerebellum. In the case of EAAC1, the enhanced expression of mRNA and protein of transporter was observed only in forebrain. The results demonstrate regional differences in the expression of glutamate transporters after short-term exposure to Pb. In forebrain, downregulation of GLT-1 is compensated by enhanced expression of GLAST, while in hippocampus, the expression of both is lowered. This observation suggests that under conditions of Pb toxicity in adult rat brain, the hippocampus is most vulnerable to the excitotoxic cell damage arising from impaired clearance of the released glutamate.  相似文献   

10.
The SOD1-G93A transgenic mouse is a widely used ALS model, but the death of lower motor neurons is the hallmark. Here, we show that the SOD1-G93A transgene and HO-1 are preferentially over-expressed in the lumbar spinal cord, particularly in the activated astrocytes of the transgenic mice. We also show down-regulation of GLT-1 in spite of the proliferating astrocytes. However, GLT-1, SOD1-G93A transgene and HO-1 expression were not obviously changed in the motor cortex. Our data link spinal cord vulnerability to relatively decreased expression of GLT-1, and high expression of the transgene and HO-1 in astrocytes in SOD1-G93A transgenic mice.  相似文献   

11.
The Na(+)-dependent L-glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2), were expressed in rat lactating mammary gland, but EAAC1 (EAAT3) was not. GLT-1 expression in rat lactating mammary gland was constant in all the physiological situations studied; however, the GLAST expression is under tight regulation. Fasting for 24 h decreased the GLAST expression which returned to control values after refeeding. Weaning for 24 h produced a decrease in GLAST expression through a mechanism independent of prolactin deficiency. Resuckling for 6 h returned the expression of this transporter to control values. There is a correlation between the levels of GLAST (mRNA and protein) and the in vivo uptake of L-glutamate by the lactating mammary gland during the starvation/refeeding cycle and milk accumulation process.  相似文献   

12.
Glutamate-induced excitotoxicity is suggested to play a central role in the development of amyotrophic lateral sclerosis (ALS), although it is still unclear whether it represents a primary cause in the cascade leading to motor neurone death. We used western blotting, immunocytochemistry and in situ hybridization to examine the expression of GLT-1 in transgenic mice carrying a mutated (G93A) human copper-zinc superoxide dismutase (TgSOD1 G93A), which closely mimic the features of ALS. We observed a progressive decrease in the immunoreactivity of the glial glutamate transporter (GLT-1) in the ventral, but not in the dorsal, horn of lumbar spinal cord. This effect was specifically found in 14- and 18-week-old mice that had motor function impairment, motor neurone loss and reactive astrocytosis. No changes in GLT-1 were observed at 8 weeks of age, before the appearance of clinical symptoms. Decreases in GLT-1 were accompanied by increased glial fibrillary acidic protein (GFAP) levels and no change in the levels of GLAST, another glial glutamate transporter. The glutamate concentration in the cerebrospinal fluid (CSF) of TgSOD1 G93A mice was not modified at any of the time points examined, compared with age-matched controls. These findings indicate that the loss of GLT-1 protein in ALS mice selectively occurs in the areas affected by neurodegeneration and reactive astrocytosis and it is not associated with increases of glutamate levels in CSF. The lack of changes in GLT-1 at the presymptomatic stage suggests that glial glutamate transporter reduction is not a primary event leading to motor neurone loss.  相似文献   

13.
The GLT-1 and GLAST astroglial transporters are the glutamate transporters mainly involved in maintaining physiological extracellular glutamate concentrations. Defects in neurotransmitter glutamate transport may represent an important component of glutamate-induced neurodegenerative disorders (such as amyotrophic lateral sclerosis) and CNS insults (ischemia and epilepsy). We characterized the protein expression of GLT-1 and GLAST in primary astrocyte-neuron cocultures derived from rat hippocampal tissues during neuron differentiation/maturation. GLT-1 and GLAST are expressed by morphologically distinct glial fibrillary acidic protein-positive astrocytes, and their expression correlates with the status of neuron differentiation/maturation and activity. Up-regulation of the transporters paralleled the content of the synaptophysin synaptic vesicle marker p38, and down-regulation was a consequence of glutamate-induced neuronal death or the reduction of synaptic activity. Finally, soluble factors in neuronal-conditioned media prevented the down-regulation of the GLT-1 and GLAST proteins. Although other mechanisms may participate in regulating GLT-1 and GLAST in the CNS, our data indicate that soluble factors dependent on neuronal activity play a major regulating role in hippocampal cocultures.  相似文献   

14.
Glutamate transporters (GLT-1, GLAST, EAAC1) limit the actions of excitatory amino acids. Because a disturbed transporter operation can cause or aggravate neurological diseases, transporters are of considerable neuropathological interest. Human samples, however, are seldom obtained fresh. Here, we used mice brains to study how fast glutamate transporters are degraded after death. Immunoblots showed that terminal GLT-1 epitopes (within residues 1–26 and 518–573) had mostly disappeared after 24 hr. GLAST termini (1–25 and 522–543) degraded slightly slower. In contrast, epitopes within central parts of GLT-1 (493–508) and the EAAC1 C-terminus (510–523) were readily detectable after 72 hr. The decline in immunoreactivity of the GLT-1 and GLAST termini was also seen in tissue sections, but proteolysis did not happen synchronously in all cells. At 24 hr, scattered cells remained strongly immunopositive, while the majority of cells were completely immunonegative. GLAST and GLT-1 co-localized in neocortical tissue, but at 12 hr, many GLAST-positive cells had lost the GLT-1 termini. The uneven disappearance of labeling was not observed with the antibodies to GLT-1 residues 493–508. The immunoreactivity to this epitope correlated better with the reported glutamate uptake activity. Thus, postmortem delay may affect epitopes differently, possibly causing erroneous conclusions about relative expression levels.  相似文献   

15.
Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus.  相似文献   

16.
Glutamate is stored in synaptic vesicles in presynaptic neurons. It is released into the synaptic cleft to provide signalling to postsynaptic neurons. Normally, the astroglial glutamate transporters GLT-1 and GLAST take up glutamate to mediate a high signal-to-noise ratio in the synaptic signalling, and also to prevent excitotoxic effects by glutamate. In astrocytes, glutamate is transformed into glutamine, which is safely transported back to neurons. However, in pathological conditions, such as an ischemia or virus infection, astroglial transporters are down-regulated which could lead to excitotoxicity. Lately, it was shown that even microglia can express glutamate transporters during pathological events. Microglia have two systems for glutamate transport: GLT-1 for transport into the cells and the xc system for transport out of the cells. We here review results from our work and others, which demonstrate that microglia in culture express GLT-1, but not GLAST, and transport glutamate from the extracellular space. We also show that TNF-α can induce increased microglial GLT-1 expression, possibly associating the expression with inflammatory systems. Furthermore, glutamate taken up through GLT-1 may be used for direct incorporation into glutathione and to fuel the intracellular glutamate pool to allow cystine uptake through the xc system. This can lead to a defence against oxidative stress and have an antiviral function.  相似文献   

17.
The mechanism of the antiepileptic drug topiramate is not fully understood, but interaction with the excitatory neurotransmission, e.g. glutamate receptors, is believed to be part of its anticonvulsant effect. The glutamate transporters GLAST and GLT-1 are responsible for the inactivation of glutamate as a neurotransmitter and it was therefore investigated if topiramate might affect the expression of GLAST and GLT-1 in astrocytes cultured separately or together with neurons. Since expression and membrane trafficking of glutamate transporters are affected by the protein kinase C system as well as by dBcAMP it was also investigated if these signalling pathways might play a role. In astrocyte cultures expressing mainly GLAST treatment with dBcAMP (0.25 mM) led to an increased expression of the total amount of GLAST as well as of its membrane association. The enhanced expression in the membrane was particularly pronounced for the oligomeric form of GLAST. No detectable effect on the expression of GLAST in astrocytes treated with topiramate in the presence and absence of protein kinase C activators or inhibitors was observed. Astrocytes co-cultured with neurons expressed both GLAST and GLT-1. In these cultures prolonged exposure to 30 muM topiramate (10 days) led to a statistically significant increase (P<0.025) in the membrane expression of GLAST. In case of GLT-1, culture in the presence of 30 microM topiramate for 1 and 10 days led to alterations in the total, cytoplamic and membrane expression of the oligomeric form of the transporter.  相似文献   

18.
Although earlier studies on thiamine deficiency have reported increases in extracellular glutamate concentration in the thalamus, a vulnerable region of the brain in this disorder, the mechanism by which this occurs has remained unresolved. Treatment with pyrithiamine, a central thiamine antagonist, resulted in a 71 and 55% decrease in protein levels of the astrocyte glutamate transporters GLT-1 and GLAST, respectively, by immunoblotting in the medial thalamus of day 14 symptomatic rats at loss of righting reflexes. These changes occurred prior to the onset of convulsions and pannecrosis. Loss of both GLT-1 and GLAST transporter sites was also confirmed in this region of the thalamus at the symptomatic stage using immunohistochemical methods. In contrast, no change in either transporter protein was detected in the non-vulnerable frontal parietal cortex. These effects are selective; protein levels of the astrocyte GABA transporter GAT-3 were unaffected in the medial thalamus. In addition, astrocyte-specific glial fibrillary acidic protein (GFAP) content was unchanged in this brain region, suggesting that astrocytes are spared in this disorder. Loss of GLT-1 or GLAST protein was not observed on day 12 of treatment, indicating that down-regulation of these transporters occurs within 48 h prior to loss of righting reflexes. Finally, GLT-1 content was positively correlated with levels of the neurofilament protein alpha-internexin, suggesting that early neuronal drop-out may contribute to the down-regulation of this glutamate transporter and subsequent pannecrosis. A selective, focal loss of GLT-1 and GLAST transporter proteins provides a rational explanation for the increase in interstitial glutamate levels, and may play a major role in the selective vulnerability of thalamic structures to thiamine deficiency-induced cell death.  相似文献   

19.
20.
GLAST and GLT-1 are the most abundant glutamate transporters in the CNS and protect neurons from glutamate neurotoxicity. Here, we investigated the role of GLAST in spinal nociceptive processing. GLAST protein expression was not altered after treatment of rats with either formalin or zymosan. Surprisingly, knock-down of GLAST in the spinal cord using antisense-oligonucleotides decreased glutamate concentrations in cerebrospinal fluid (CSF) and reduced the nociceptive behaviour in the rat formalin assay. However, it did not influence thermal hyperalgesia in the zymosan-induced paw inflammation model indicating that GLAST is associated with spontaneous rather than inflammatory nociception. Mechanisms that might explain the decreased response in the formalin assay may include compensatory activation of other glutamate transporters, inhibition of glutamate release or disturbance of glutamate recycling. In conclusion, these data suggest that inhibition of GLAST expression in the spinal cord reduces excitatory synaptic activity and thereby spontaneous responses after nociceptive stimulation of the paw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号